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ABSTRACT
This short paper presents insights from our experience in main-
taining SGX-Step, an open-source attack framework designed to
facilitate vulnerability research on Intel Software Guard Exten-
sions (SGX) enclave technology. At a high level, SGX-Step enables
precise “single-stepping” of hardware-isolated victim enclaves with-
out native debugging capabilities. By strategically triggering page
faults and timer interrupts, SGX-Step can seamlessly interleave
arbitrary attacker code at a maximal temporal resolution, i.e., after
every individual victim instruction. Since its original release in 2017,
SGX-Step has been widely utilized in over 38 academic papers, driv-
ing an ongoing line of high-resolution, interrupt-driven enclave
side-channel attacks. Its impact also extends beyond Intel SGX,
directly inspiring similar tools for alternative hardware enclave
technologies and even finding applications in non-enclave settings.
From a defensive perspective, SGX-Step has permanently refined
the trusted-execution threat model and guided recent defensive
works that now properly account for single-stepping adversaries.
Highlighting its continued relevance, SGX-Step has prompted re-
cent architectural extensions to Intel SGX’s hardware specification,
introducing interrupt-awareness for enclaves to enable the develop-
ment of principled mitigations against interrupt-driven attacks in
software. A first such mitigation that thwarts deterministic single-
stepping has already been included in the Intel SGX-SDK.

1 INTRODUCTION
Recent efforts from industry and academia have developed hardware-
based trusted execution environments (TEEs) to safeguard critical
application code and data in the presence of a possibly hostile op-
erating system. The introduction of the popular Software Guard
Extensions (SGX) [17, 35], included in selected Intel processors
from 2015 onwards, has first made support for such “enclaved exe-
cution” widely available on mainstream computing platforms. SGX
has since enabled a wide variety of enclave applications and is
presently even used as a critical building block for Intel’s upcoming
Trust Domain Extensions (TDX) [36] server technology. SGX thus
holds the promise of securely outsourcing private computations to
untrusted remote cloud platforms.

However, the popularity of SGX and its strengthened adver-
sary model has also enabled novel offensive research. Specifically,
researchers have shown that privileged SGX adversaries can exer-
cise their increased control over the untrusted operating system to
mount an innovative series of highly capable and low-noise side-
channel attacks, also referred to as controlled-channel attacks [84].
One commonality underlying many of these attacks is that they
benefit from frequently preempting the victim enclave through
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privileged page faults or timer interrupts to repeatedly gather side-
channel samples. Thus, the temporal resolution of these attacks is
dictated by the accuracy with which an adversary can interrupt a
victim enclave. This early insight, resulting from our own pioneer-
ing interrupt-driven attack efforts [75, 76], is what first motivated
us to release the open-source SGX-Step [74] framework for fine-
grained enclave execution control. Looking back, SGX-Step brought
two main novelties to the early SGX attack scene.

First, SGX-Step contributed an innovative manipulation tech-
nique of the processor’s integrated advanced programmable inter-
rupt controller (APIC) timer device that for the first time allowed
to reliably interrupt enclaves at a maximal temporal resolution,
i.e., exactly one instruction at a time. This was in notable con-
trast to state-of-the-art attacks [26, 45, 50] at the time, which only
succeeded in preempting enclaves rather unreliably at best sev-
eral instructions at once. SGX-Step has since been leveraged in
a long line of high-resolution, interrupt-driven side-channel at-
tacks [2, 3, 8, 14, 18, 25, 30, 31, 31, 32, 47, 52, 56–58, 63, 65, 71–73, 75],
some of which critically rely on the ability to deterministically
count the number of interrupted enclave instructions. Furthermore,
from a defensive perspective, SGX-Step’s precise single-stepping
capability fundamentally defeated early mitigations [22, 33, 45]
that relied on partial atomic behavior of the enclave instruction
stream. SGX-Step subsequently informed more recent defensive
works [5, 9, 15, 28, 34], which now properly take single-stepping
adversary capabilities into account. Most notably, SGX-Step’s ver-
satility and precision in single-stepping production enclaves was
considered so impactful that it explicitly prompted Intel to develop
extensions to the SGX instruction set architecture (ISA). Specifi-
cally, we collaborated with Intel on AEX-Notify [15], a minimal
hardware-software co-design, which is now integrated into recent
Intel processors and SDKs, to facilitate the development of princi-
pled mitigations against interrupt-driven attacks in software.

As a second novelty, SGX-Step was the first framework of its
kind to offer open-source reusable building blocks for rapid en-
clave attack prototyping. That is, state-of-the-art SGX side-channel
attacks at the time required developing a custom and fragile ker-
nel driver [26, 50, 76, 84] or even patching and recompiling the
entire operating system kernel [45]. In contrast, SGX-Step was
purposefully engineered for compatibility with unaltered stock
Linux kernels, requiring only a minimal driver to effectively dele-
gate privileged adversary capabilities to user space. After loading
the SGX-Step driver, all required attack primitives, including ma-
nipulating x86 APIC timer device registers or page-table entries,
can be directly implemented with the help of a convenient attack
library within the untrusted, user-space enclave host process. SGX-
Step thus considerably lowered the bar for enclave attack develop-
ment, as evidenced from the 38 academic research papers, many
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of which were published at top-tier security venues, that were di-
rectly built on its reusable code base to date. Notably, the impact
of our framework also extends beyond only Intel SGX. On the one
hand, SGX-Step’s convenient user-space page-table remapping and
manipulation interfaces have found adoption for generic x86 attack
prototyping [10, 21, 83, 87] and even inspired dedicated tools such
as PTEditor [21, 62]. On the other hand, in the context of alter-
native TEEs, the widespread adoption and visibility of SGX-Step
has directly sparked the development of analogous single-stepping
frameworks with similar names, such as Sancus-Step [19], Load-
Step [41], SEV-Step [81], and TDX-Step [37].

Open-Source Artifact. Over the past six years, we have ac-
tively maintained SGX-Step as an open-source project available at
https://github.com/jovanbulck/sgx-step, continuously enhancing
the framework with new features and ensuring compatibility with
the latest Linux kernel and SGX-SDK versions. Beyond its academic
impact, which is evident from the 196 citations for the original
paper [74] and the 38 subsequent publications directly based on
our code, SGX-Step has also garnered considerable recognition in
the open-source community, marked by 393 stars, 81 forks, and
27 watchers. While SGX-Step has matured substantially since its
inception as a research prototype aimed at addressing an intri-
cate technical challenge, it remains a living project and there are
certainly opportunities for further refinement. Nonetheless, our
commitment to enhancing SGX-Step is reflected in the 33 support
issues and the 15 pull requests accepted from external contributors
so far, all contributing to its ongoing development and strength.

2 FRAMEWORK OVERVIEW
SGX-Step primarily serves as a universal execution control frame-
work that enables the precise interleaving of victim enclave instruc-
tions with arbitrary attacker code. Because native x86 hardware
debug events are suppressed for SGX production enclaves [35],
SGX-Step offers alternative methods to interrupt enclaves, utilizing
either timer interrupt requests (IRQs) or page faults. The former
enables precise single-stepping of one instruction at a time, whereas
the latter can be employed in coarse-grained controlled-channel at-
tacks [84] to intercept specific code or data page accesses at a 4 KiB
granularity. Practical attacks often combine both techniques by first
steadily advancing the enclaved execution using a page-fault state
machine, before finally enabling single-stepping mode to reach a
chosen gadget of interest within a selected victim page. SGX-Step
can, furthermore, be used to “zero-step” a victim enclave by repeat-
edly faulting without making architectural forward progress, which
can serve as a capable amplification primitive to forcibly replay
transient instructions or data accesses [47, 63, 66, 71].

Figure 1 overviews the main components of our framework. SGX-
Step bootstraps by loading a minimal Linux kernel driver, named
/dev/sgx-step, which effectively extends traditionally privileged
operating system capabilities into user space. Our design philoso-
phy, from the project’s inception, has been to keep this loadable
kernel module as minimal as possible for the sake of usability and
compatibility across Linux versions. Thus, any needed configura-
tions are maximally achieved through stock Linux kernel command
line boot parameters, while avoiding custom kernel compilation
altogether. The primary function of /dev/sgx-step is to override
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Figure 1: Overview of main SGX-Step components.

permissions on Linux’s default /dev/mem device, granting unre-
stricted access to arbitrary physical memory locations. Addition-
ally, it provides a convenient ioctl system-call interface for tasks
such as walking page tables and establishing shadow mappings in
kernel space. The core functionality of SGX-Step is thus realized in
a compact libsgxstep library, which is linked into the untrusted
enclave host application together with any specific attack logic.
This library essentially acts as a mini user-space operating system,
enabling direct access to privileged x86 system structures, includ-
ing page-table entries and the memory-mapped I/O registers of
the local APIC. Notably, some of SGX-Step’s functionality has un-
dergone substantial enhancements since its initial release. This is
particularly noticeable in the interrupt handling logic, which was
initially hooked statically in the kernel, but has since been relocated
entirely to libsgxstep. This transition involved remapping the x86
global and interrupt descriptor tables into user space, allowing to
install arbitrary interrupt handlers and even privileged ring-0 call
gates in the untrusted enclave host application (while taking care
to maintain a globally visible shadow mapping in the kernel for any
interrupt handlers). Modern SGX-Step distributions, furthermore,
include support for inter-processor interrupts, CPU scheduling and
pinning, segmentation, cache and transient-execution attack primi-
tives, and accessing debug enclave memory and register contents.

The main technical hurdle left for users of SGX-Step is to estab-
lish a suitable, platform-specific value for the APIC timer interrupt
interval, depending on the processor’s internal bus frequency and
microcode version. SGX-Step includes reference timer interval val-
ues and a benchmarking tool to assist further gradual fine-tuning
of this parameter using a long instruction slide in an attacker-
controlled debug enclave. An overestimated timer interval will lead
to “multi-step” observations, where the enclave advancedmore than
one instruction on the slide. Conversely, if the interval is set too low,
excessive zero-step events without progress will be observed. Con-
veniently, the latter can be deterministically filtered out in recent
SGX-Step versions by inspecting the “accessed” bit in the enclave’s
code page-table entry, which is only ever set when the instruction
actually retired and a single-step event occurred [15, 75]. Thus,
even though the onboard APIC timer is known to be inherently
noisy [15], SGX-Step can achieve highly reliable, fully deterministic
execution control even when single-stepping hundreds of thou-
sands of instructions in practice [2, 3, 52, 56, 74].

https://github.com/jovanbulck/sgx-step
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3 IMPACT ON ATTACK RESEARCH
The ability to forcibly single-step a production enclave has proven
to be be a particularly powerful and versatile attack primitive in
practice. Table 1 presents an overview of published works using
SGX-Step and the broader landscape of early interrupt-driven SGX
attacks. The table clearly shows SGX-Step’s pioneering role in intro-
ducing true single-stepping capabilities and its increasing adoption
and prominence in subsequent high-resolution attack research.
Additionally, even without using single-stepping, a considerable
number of works [4, 10, 29, 43, 68, 79, 80, 83, 87, 89] have harnessed
SGX-Step’s powerful page-table manipulation interface. Lastly, the
table highlights that our user-space library methodology signifi-
cantly simplified the process of prototyping attacks, eliminating
the need for custom kernel modules or compilation.

Novel IRQ Leakage Sources. Notably, SGX-Step has driven a
distinctive category of entirely new attacks that would not be pos-
sible without its deterministic single-stepping capabilities.

A first influential class of attacks is based on interrupt latency [27,
56, 57, 75]. These attacks exploit that the time it takes to process an
interrupt depends on the specific instruction being executed within
the enclave at the moment the interrupt request arrived. SGX-Step
supports transparently collecting a precise interrupt latency trace
during single-stepping. This trace essentially acts as a microarchi-
tectural “x-ray” of the enclaved execution, breaking down overall
execution time into a revealing chronological sequence of indi-
vidual instruction timings, which expose fine-grained details like
instruction opcodes, operand values, and branch decisions within a
cache line. Following SGX-Step, interrupt latency attacks have since
also been ported to alternative TEEs, including MSP430 microcon-
trollers [6, 75] and AMD Secure Encrypted Virtualization (SEV) [81].

A second, particularly powerful line of attacks [2, 3, 40, 52, 73, 74]
recognizes that the number of single-stepping interrupts between
page accesses directly reveals the number of instructions executed
in the victim enclave. Thus, interrupt counting allows for the fully
deterministic detection of extremely subtle control-flow imbalances,
ultimately differing only in a single instruction, which may other-
wise not be exploitable in practice. Several studies [2, 3, 52] have
used SGX-Step’s instruction counts to extract full keys from vetted
real-world cryptographic libraries, even in cases involving one-time
key generation functions that require precisely probing successive
branches in a single run of the victim enclave [52]. Instruction
counting with SGX-Step has also been applied to build determin-
istic side-channel oracles in challenging scenarios involving tight
loops, e.g., to exploit slightly non-constant-time strlen() pointer
validation [73] or memcmp() password comparison [69] logic.

Lastly, SGX-Step timer interrupts or page faults have been used
for zero-stepping. This was first applied to forcibly reload inter-
rupted register contents in the context of transient-execution at-
tacks [51, 63, 71] and later generalized to replay microarchitectural
resource utilization [66] and power consumption [47].

High-Resolution Probing. The most general and widely used
application of SGX-Step is to amplify the temporal resolution of
side-channel attacks that rely on frequent probing. Such interrupt
amplification with SGX-Step has been repeatedly applied to the
CPU cache [14, 30, 31, 65], allowing to accurately probe remarkably

Table 1: Overview of academic papers building on SGX-
Step (highlighted rows with ), alongside early interrupt-
driven attacks, in terms of the temporal resolution, primary
use case, andwhether customkernel compilation is avoided.

Yr Venue Paper Step Use Case Drv

’15 S&P Ctrl channel [84] ∼ Page Probe (page fault) ✓

’16 ESORICS AsyncShock [78] ∼ Page Exploit (mem safety) –
’17 CHES CacheZoom [50] ✗ >1 Probe (L1 cache) ✓

’17 ATC Hahnel et al. [26] ✗ 0 - >1 Probe (L1 cache) ✓

’17 USENIX BranchShadow [45] ✗ 5 - 50 Probe (BPU) ✗

’17 USENIX Stealthy PTE [76] ∼ Page Probe (page table) ✓

’17 USENIX DarkROP [44] ∼ Page Exploit (mem safety) ✓

’17 SysTEX SGX-Step [74] ✓ 0 - 1 Framework ✓

’18 ESSoS Off-limits [25] ✓ 0 - 1 Probe (segmentation) ✓

’18 AsiaCCS Single-trace RSA [80] ∼ Page Probe (page fault) ✓

’18 USENIX Foreshadow [71] ✓ 0 - 1 Probe (transient exec) ✓

’18 EuroS&P SgxPectre [11] ∼ Page Exploit (transient) ✓

’18 CHES CacheQuote [20] ✗ >1 Probe (L1 cache) ✓

’18 ICCD SGXlinger [27] ✗ >1 Probe (IRQ latency) ✗

’18 CCS Nemesis [75] ✓ 1 Probe (IRQ latency) ✓

’19 USENIX Spoiler [38] ✓ 1 Probe (IRQ latency) ✓

’19 CCS ZombieLoad [63] ✓ 0 - 1 Probe (transient exec) ✓

’19 CCS Fallout [10] – Probe (transient exec) ✓

’19 CCS Tale of 2 worlds [73] ✓ 1 Exploit (mem safety) ✓

’19 ISCA MicroScope [66] ∼ 0 - Page Framework ✗

’20 CHES Bluethunder [32] ✓ 1 Probe (BPU) ✓

’20 USENIX Big troubles [79] ∼ Page Probe (page fault) ✓

’20 S&P Plundervolt [53] – Exploit (undervolt) ✓

’20 CHES Viral primitive [2] ✓ 1 Probe (IRQ count) ✓

’20 USENIX CopyCat [52] ✓ 1 Probe (IRQ count) ✓

’20 S&P LVI [72] ✓ 1 Exploit (transient) ✓

’20 CHES A to Z [4] ∼ Page Probe (page fault) ✓

’20 CCS Déjà Vu NSS [68] ∼ Page Probe (page fault) ✓

’20 MICRO PTHammer [87] – Probe (page walk) ✓

’21 USENIX Frontal [56] ✓ 1 Probe (IRQ latency) ✓

’21 S&P CrossTalk [58] ✓ 1 Probe (transient exec) ✓

’21 CHES Online template [3] ✓ 1 Probe (IRQ count) ✓

’21 NDSS SpeechMiner [83] – Framework ✓

’21 S&P Platypus [47] ✓ 0 - 1 Probe (voltage) ✓

’21 DIMVA Aion [31] ✓ 1 Probe (cache) ✓

’21 CCS SmashEx [18] ✓ 1 Exploit (mem safety) ✓

’21 CCS Util::Lookup [65] ✓ 1 Probe (L3 cache) ✓

’22 USENIX Rapid prototyping [21] ✓ 1 Framework ✓

’22 CT-RSA Kalyna expansion [14] ✓ 1 Probe (L3 cache) ✓

’22 SEED Enclyzer [89] – Framework ✓

’22 NordSec Self-monitoring [43] ∼ Page Defense (detect) ✓

’22 AutoSec Robotic vehicles [48] ✓ 1 - >1 Exploit (timestamp) ✓

’22 ACSAC MoLE [42] ✓ 1 Defense (randomize) ✓

’22 USENIX AEPIC [8] ✓ 1 Probe (I/O device) ✓

’22 arXiv Confidential code [57] ✓ 1 Probe (IRQ latency) ✓

’23 ComSec FaultMorse [29] ∼ Page Probe (page fault) ✓

’23 CHES HQC timing [30] ✓ 1 Probe (L3 cache) ✓

’23 ISCA Belong to us [86] ✓ 1 Probe (BPU) ✓

’23 USENIX BunnyHop [88] ✓ 1 Probe (BPU) ✓

’23 USENIX DownFall [51] ✓ 0 - 1 Probe (transient exec) ✓

’23 USENIX AEX-Notify [15] ✓ 1 Defense (prefetch) ✓

nuanced secret-dependent data accesses in tight loops or bypass
software prefetching mitigations. Other works have similarly used
SGX-Step to probe the branch predictor [32, 86, 88] or segmenta-
tion [25] units at a precise, instruction-level granularity. Finally,
SGX-Step has also been utilized to accurately progress a victim
enclave’s execution until it reaches a selected gadget of interest,
e.g., in the context of transient execution [51, 58, 63, 71, 72] or
interface [8, 18, 73] attacks.
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Alternative Use Cases and Platforms. SGX attack research
has proven to be a fertile ground for pioneering novel side-channel
attack methods. Interestingly, it has been observed [61, 70] that
some of these innovations, initially targeted at a privileged TEE
adversary model, have subsequently found applications in tradi-
tional isolation environments, such as unprivileged processes or
virtual machines. This phenomenon underscores the importance of
offensive enclave research and the cross-pollination of ideas and
techniques between TEEs and conventional security models.

As a first tendency, SGX-Step’s open-source framework, partic-
ularly its user-space page-table manipulation interface, has been
employed to prototype generic x86 attacks that are unrelated to
SGX [10, 21, 83, 87]. Furthermore, it has served as an inspiration
for dedicated frameworks like PTEditor [62].

Second, the interrupt-driven single-stepping technique pioneered
by SGX-Step has since been ported to similar frameworks for
other TEEs. This includes Sancus-Step [19] targeting Sancus [54]
enclaves on embedded MSP430 microcontrollers, Load-Step [41]
and CacheGrab [59] for ARM TrustZone, and most recently SEV-
Step [81] perfecting prior attempts [46, 77] to single-step encrypted
AMD SEV virtual machines. Moreover, as part of the security as-
surance program of their upcoming TDX architecture, Intel [37] in
close collaboration with Google [1] has demonstrated TDX-Step
attacks. All of these projects are explicitly named after SGX-Step
and acknowledge our framework as an inspiration, marking its
lasting impact on the wider TEE attack research landscape.

4 IMPACT ON MITIGATIONS
SoftwareHardening. A significant outcome of confronting priv-

ileged adversary capabilities through SGX-Step is that it has conclu-
sively guided applications towards strict compliance with constant-
time coding practices. This is most evident in the long line of attacks
that leverage SGX-Step [2–4, 14, 29, 30, 32, 52, 56, 65, 68, 79, 80, 88]
or derived TEE single-stepping frameworks [41, 59, 81, 90] to ex-
ploit ever more nuanced side-channel leaks in vetted cryptographic
libraries. Without SGX-Step, many of these vulnerabilities may not
have been deemed exploitable in practice, thus effectively raising
the bar for the stricter verification of cryptographic implementa-
tions and even informing improved, single-stepping-aware side-
channel detection tools [85].

The enhanced precision of single-stepping adversaries has also
informed specialized compiler mitigations. For instance, our single-
stepping attacks [25, 74, 75] against the Zigzagger [45] branch-
shadowing mitigation have directly inspired an improved compile-
time hardening technique based on randomization [28]. Once more
highlighting the importance of the continued attack-defense cy-
cle, however, even this improved compiler mitigation, explicitly
designed to withstand SGX-Step, was subsequently bypassed via
interrupt counting [52] or architectural interfaces that approximate
SGX-Step on RISC-V [23]. Likewise, Intel explicitly mentions SGX-
Step in the security analysis of their software-based Load Value
Injection (LVI) mitigations [34]. Finally, in the context of low-end
embedded TEEs, interrupt latency attacks have sparked a line of
compile-time balancing mitigations [7, 55, 60, 82].

Reactive Interrupt Detection. In the original SGX specifica-
tion [49], enclaves are explicitly interrupt-unaware. In response to

the interrupt-driven techniques supported by SGX-Step, various
researchers [5, 12, 13, 24, 64, 67] have explored leveraging Intel’s
(deprecated) Transactional Synchronization Extensions (TSX) to
make enclaves interrupt-aware. However, heuristic detection ap-
proaches are inherently fragile, suffering from both false positives
and negatives [31, 39]. Moreover, TSX is scarcely available and
comes with substantial performance overheads [64, 67].

Proactive Interrupt Safeguards. One of the most notable con-
sequences of SGX-Step is the development of more principled, ar-
chitectural approaches to address interrupt-driven attacks. For in-
stance, the embedded Sancus TEE prototype includes a modified,
hardware-level interrupt mechanism that was formally proven to
be free from side-channel leakage, including interrupt latency [9].

Moreover, in explicit response to SGX-Step [15, 16], Intel recently
announced ISA extensions integrated in contemporary SGX pro-
cessors. Particularly, we engaged in a collaborative effort with Intel
to develop a flexible hardware-software co-design known as AEX-
Notify [15]. The hardware component empowers SGX enclaves
with interrupt awareness by allowing them to register a trusted
software handler to be executed following an interrupt or exception.
Following a thorough root-cause analysis of SGX-Step’s underlying
behavior, we developed a robust AEX-Notify software handler to
thwart deterministic single-stepping attacks. Our handler, included
in the latest Intel SGX-SDK, includes a constant-time disassembler
and a carefully crafted assembly stub to transparently determine
and atomically prefetch the working set of the next enclave applica-
tion instruction. This prefetching ensures that the next application
instruction executes quickly and does not fault, thereby obviating
the prerequisites for single- and zero-stepping attacks (while not
precluding multi-step or fault-driven attacks). Notably, SGX-Step’s
open-source model has been instrumental during this entire pro-
cess. Not only prompting Intel to address interrupt-awareness for
SGX enclaves, a long-standing limitation, but also to inform its root-
cause analysis and to stress-test rejected early alternatives [15] as
well as the final mitigation, thus helping to ensure the solution’s
robustness and effectiveness in practice.

Likewise, Intel ensured that their upcoming TDX 1.0 software
module contains a mitigation against TDX-Step attacks [1, 37]. The
TDX module is described to recognize high interrupt frequencies
and, upon detecting a potential single-stepping attack, randomly
delays the interrupt delivery to the adversarial virtual-machine
monitor. This marks tangible progress: thanks to the open model
provided by SGX-Step, Intel and Google could swiftly prototype
TDX-Step (even well ahead of their internal timeline [37]) and
develop and test a mitigation prior to TDX’s public release.

5 CONCLUSIONS AND OUTLOOK
SGX-Step constitutes a paradigm shift in TEE attack research, effec-
tively redefining the boundaries of enclave security analysis, much
like the advent of high-speed photography cameras revolutionized
the exploration of fast-paced and fleeting phenomena in the phys-
ical world. We firmly believe that the continued development of
SGX-Step’s open-source prototype, accessible to all for inspection
and enhancement, is vital to confront the ultimate consequences of
a privileged TEE adversary model and, thus, set the bar for adequate
enclave mitigations in the confidential computing era.
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