AioN: Enabling Open Systems through Strong Availability
Guarantees for Enclaves

Fritz Alder

fritz.alder@acm.org
imec-DistriNet, KU Leuven
Leuven, Belgium

Frank Piessens
frank.piessens@cs.kuleuven.be
imec-DistriNet, KU Leuven
Leuven, Belgium

ABSTRACT

Embedded Trusted Execution Environments (TEEs) can provide
strong security for software in the IoT or in critical control systems.
Approaches to combine this security with real-time and availability
guarantees are currently missing. In this paper we present AION, a
configurable security architecture that provides a notion of guar-
anteed real-time execution for dynamically loaded enclaves. We
implement preemptive multitasking and restricted atomicity on
top of strong enclave software isolation and attestation. Our ap-
proach allows the hardware to enforce confidentiality and integrity
protections, while a decoupled small enclaved scheduler software
component can enforce availability and guarantee strict deadlines
of a bounded number of protected applications, without necessar-
ily introducing a notion of priorities amongst these applications.
We implement a prototype on a light-weight TEE processor and
provide a case study. Our implementation can guarantee that pro-
tected applications can handle interrupts and make progress with
deterministic activation latencies, even in the presence of a strong
adversary with arbitrary code execution capabilities.

CCS CONCEPTS

« Security and privacy — Trusted computing; Operating sys-
tems security; Embedded systems security; « Computer systems
organization — Real-time systems; Availability.

KEYWORDS

trusted computing, availability, open systems, resource sharing

ACM Reference Format:

Fritz Alder, Jo Van Bulck, Frank Piessens, and Jan Tobias Mithlberg. 2021.
A10N: Enabling Open Systems through Strong Availability Guarantees for
Enclaves. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS 21), November 15-19, 2021, Virtual Event,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484782

Jo Van Bulck

jo.vanbulck@cs.kuleuven.be
imec-DistriNet, KU Leuven
Leuven, Belgium

Jan Tobias Mihlberg
jantobias.muehlberg@cs.kuleuven.be
imec-DistriNet, KU Leuven
Leuven, Belgium

Republic of Korea. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3460120.3484782

1 INTRODUCTION

With the increased connectivity of devices all across the computing
spectrum comes an increasing demand for systems that are not
locked down but are more dynamic and open to changes after they
are deployed in the real world. An open system runs software com-
ponents (tasks, processes, ...) from several stakeholders that do not
necessarily trust each other. The resources of such system, includ-
ing memory, devices, and the CPU, must be shared among these
software components without introducing security vulnerabilities
that would allow a malicious component to violate the security
expectations of another component. Traditionally, Operating Sys-
tem (OS) kernels have the responsibility of enforcing appropriate
isolation between components, and, hence, the OS kernel has been
part of the Trusted Computing Base (TCB).

However, experience has shown that operating system kernels
can have vulnerabilities too, and several approaches have been
explored to reduce the amount of trust in the OS kernel:

First, there is a long line of work in reducing the size of kernels
(e.g., move to microkernels), or relying on simpler hypervisors or
security monitors for enforcing isolation [6, 23, 36]. The key idea
is that the trusted layer of software gets smaller, but all software
components still need to fully trust the system software for any of
their security properties.

Second, formal verification of system software has been proposed
as a mechanism to reduce the likelihood of vulnerabilities, and,
hence, to better justify the level of trust in system software[17, 19].

Third, work in the trusted computing research area has devel-
oped the idea of Trusted Execution Environments (TEEs) or en-
claves [1, 5, 7, 20, 21, 26, 30]. These approaches make it possible to
remove most (if not all) system software from the TCB, but they
cannot guarantee all desired security properties. More specifically,
while integrity and confidentiality of enclaves can be guaranteed
with a TCB consisting of just the enclave software itself and the
hardware, no availability guarantees can be provided. More gen-
erally, these systems can provide strong guarantees for resources
(like memory) that are spatially shared, but not for resources (like
CPU time) that are temporally shared. In the best case (for instance,
in Intel SGX), the operating system kernel can preempt temporally
shared resources from misbehaving enclaves, at the cost of having

https://doi.org/10.1145/3460120.3484782
https://doi.org/10.1145/3460120.3484782
https://doi.org/10.1145/3460120.3484782

to trust the kernel for availability properties. In other cases, there
are no availability guarantees in the presence of malicious enclaves.

The objective of this paper is to improve the state-of-the-art in
this third approach. We propose a hardware/software co-design
that supports classic enclave-like isolation of software components
in an open system, and that improves on that classic isolation by
also providing availability guarantees. Our system supports the
secure temporal sharing of resources (including CPU and I/O de-
vices) among mutually distrusting software components with a
small TCB. More specifically, a given enclave software component
needs to trust: (i) its own code and the hardware for confidential-
ity and integrity properties, and (ii) its own code, the hardware,
the drivers of the shared devices it requires access to, and a small,
trusted scheduler enclave for availability properties. Crucially, since
the scheduler is only trusted for availability, our design protects
the confidentiality and integrity of vital enclave applications even
against a misbehaving scheduler. Furthermore, when the scheduler
is well-behaved, our design can provide strong availability guaran-
tees (including real-time guarantees) to software components in
the presence of arbitrary malicious software on the platform out-
side the TCB (including malicious enclaves, malicious drivers for
devices not used by this specific component, and system software
besides the trusted scheduler).

Our design targets small embedded systems (specifically, our
prototype is based on a TI MSP430 16-bit processor running the
RIOT OS), both because these can benefit most from availability
and real-time guarantees, and because this allows us to focus on
the essence of our design: building on preemption combined with
a safe bounded atomicity primitive. Extensions to larger systems,
such as for instance Intel SGX-scale processors, are not in the scope
of this paper, and are left for future work.

In summary, the contributions of this paper are:

e a novel hardware-software co-design of a security archi-
tecture for open systems that extends the strong security
properties of modern hardware TEEs with strong guarantees
on enclave availability, even in the presence of powerful
software adversaries on the same platform.

e a prototype implementation built by extending an existing
TI MSP430-based TEE and by extending the existing RIOT
IoT operating system.

e acase-study driven evaluation of the security and availability
provisions and the costs of the design.

2 PROBLEM AND ASSUMPTIONS

To illustrate the problem and our platform requirements, we first
discuss the base platform that we use as a starting point for our
work. We then describe a simple application scenario with specific
security and availability needs that cannot be realized with classic
TEE implementations. Finally we generalize this to derive platform
requirements and discuss these in the context of related work.

In general, we aim to support open systems, which are systems
that allow multiple distrusting stakeholders to dynamically load
arbitrary applications at runtime. While it is obviously possible to
combine an open system with priority-based scheduling, the inter-
esting and most difficult case is dealing with mutually distrusting

stakeholders executing code with the same priority. Only in this
case resources have to be divided fairly.

2.1 Generalized Base Platform

The base platform we start from is an embedded TEE that provides
an enclave-like isolation mechanism. This base platform supports
the creation of enclaves that offer the following security guaran-
tees. First, the software in an enclave is isolated from all other
software on the same platform, including system software such as
the operating system. Second, enclaves support (local and remote)
attestation: they can provide cryptographic evidence about their
identity (characterized by a cryptographic hash of the binary code
of the enclave). These security guarantees rely on a small trusted
computing base, sometimes even only the hardware.

More specifically, in terms of isolation, the base platform guar-
antees that: (i) the data section of an enclave is only accessible
while executing code from the code section of that same enclave,
and (ii) the code section can only be entered through one or more
designated entry points. These isolation guarantees are simple, but
they have been shown to be strong enough and useful to enforce
confidentiality and integrity properties of enclaved applications or
modules. For instance, Patrignani et al. [32] show how encapsu-
lation mechanisms from Java-like object-oriented languages can
be securely compiled to a platform that supports enclaves. This
implies that confidentiality and integrity properties of the enclave
can be guaranteed in an open system: an enclave developer only
needs to trust (or verify) the code of their own enclave (and pos-
sibly other enclaves that the enclave depends on, such as device
driver enclaves). As a consequence, mutually distrusting enclaves
can co-exist on the platform, and neither one needs to trust the
other to maintain its own security, which is limited to confidential-
ity and integrity. The construction and the benefits of such a base
platform is well understood, and Maene et al. [24] provide a survey
of existing platforms.

However, these platforms lack any kind of availability guarantee.
On some platforms [13, 30, 31] enclaves can protect themselves
from being interrupted (and, hence, get atomicity guarantees) for
security purposes, but as a consequence a misbehaving enclave
can abuse such atomicity guarantees to disrupt the system and
make it unavailable to other enclaves. On systems [7, 20, 21, 26]
where enclaves are interruptible, on the other hand, enclaves do
not get any guarantees on progress. For instance, enclaves might
never get scheduled, or when they are scheduled they can get
interrupted again without having made any progress. Also, enclaves
may need to acquire resources other than memory or CPU, e.g.,
access to I/O devices like sensors or communication channels, and
no guarantees can be provided that the enclave can acquire these
within a bounded time span. Note that some Memory-Mapped I/O
(MMIO) devices may only use a specific memory region to interact
with the applications. This means that this memory region needs
to be temporally shared between applications as a spatial sharing
may not be possible for certain control or status bits. Finally, some
platforms handle security violations in such a way that a security
violation from one enclave can impede the progress of another
one. For instance, a security violation might lead to a platform
reset [13, 30, 31].

Application A
Check temperature D/ x Send out alerts
sensor every second

Temperature Communication
sensor interface
Access same
resources
Application B

Figure 1: Simple example of two applications periodically
accessing the same shared resources.

This set of shortcomings leads us to the problem we set out to
solve in this paper: how can an enclave platform provide availability
guarantees, while maintaining the desired strong confidentiality
and integrity guarantees, i.e., in particular that only the hardware
plus the enclave itself and any dependent enclaves need to be trusted
or verified. By doing so, the platform we design is the first enclave
platform to provide a strong notion of availability for mutually
distrusting enclaves, where neither one needs to trust the other to
maintain its own security, which includes confidentiality, integrity,
and availability properties.

2.2 A Running Example

Figure 1 depicts a scenario with two applications A and B that
execute periodically, monitoring the same temperature sensor. Each
application will trigger an alert if the temperature exceeds a pro-
grammed threshold. These alerts are communicated over the same,
shared communication interface. We assume an open system where
all system resources, including the CPU, the sensor and the com-
munication interface, may be used by multiple applications. The de-
ploying stakeholders of A and B are neither aware of each other’s
applications, nor would they trust each other’s applications to be-
have collaboratively. However, both stakeholders consider their
applications to be critical as harm may be caused if the alarms are
not triggered within strict time bounds. The stakeholders do trust
the execution platform to uphold a notion of spatial and temporal
isolation for their respective applications, and they may rely on
primitives such as remote attestation to be ensured of their ap-
plication execution on the intended platform. In regards to input
and output from the temperature sensor and to the communica-
tion interface, the applications trust the utilized peripherals and an
attacker controlling one of the peripherals themselves or a failed
sensor are out of scope of their attacker model. This means that the
platform aims to provide guarantees only up to the device bound-
aries and tamper-resistant sensors or resilience against network
denial-of-service attackers are left to orthogonal research. At the
same time, peripheral drivers on the system and their communica-
tion with attached devices are in scope of the guarantees as long as
the attached peripheral is responsive.

While the spatial isolation properties required by our running
example are generally well understood in existing TEE platforms,

these platforms do not provide the required availability guarantees.
This includes the temporal sharing of MMIO devices. Specifically,
the requirements of A and B to run periodically, make progress,
and get a guaranteed opportunity to send out the alert cannot be
realized with existing TEE platforms. Especially not considering
that in our example, no application trusts any other application
on the device, for example considering them as compromised by a
strong software adversary.

2.3 Security & Availability Guarantees

We follow the established attacker model in TEE research (cf. Maene
etal. [24]), where all software that is not explicitly part of an applica-
tion’s TCB is considered to be under the control of the attacker. We
consider hardware-level attacks to be out of scope for our prototype.
In particular, an attacker cannot physically disconnect components
or control peripherals.

Under this model, the platform should provide the same guaran-
tees as the described generalized base platform above, i.e., confiden-
tiality and integrity of mutually distrusting applications combined
with the possibility to attest applications to remote parties. As a
generalization of the availability requirements of the running exam-
ple, the platform has to provide the following additional availability
guarantees for a bounded number of protected applications:

o Bounded activation latency: the platform guarantees a specific
finite bound on the maximal time that can elapse between
an event (in the example case, a timer interrupt) and the
execution of the first instruction of an enclave that wants to
act on the event.

o Guaranteed progress: the platform guarantees that within a
specific time interval T (e.g. a second), at least x percent of
the CPU cycles goes to the monitoring application (where T
and x can be configurable, but an application can securely
attest these values to a remote stakeholder).

o Guaranteed device access: device drivers can be programmed
to provide assurance to an application that it can acquire
access to all devices it needs within a specific finite time T.
Obviously, the temperature monitoring application needs to
trust (or verify) the code of the sensor driver and communi-
cation channel driver, and use it appropriately to get these
guarantees. But an important point is that no other applica-
tions competing for the same resources need to be trusted.

o Safety independence: faults in the executions of other appli-
cations do not impact the availability of the temperature
monitoring application. Only the application itself (includ-
ing dependent code) must be trusted (or verified) not to have
faults (including security faults) to preserve availability.

e No trust hierarchy: the same guarantees can be given to
multiple mutually distrusting applications. Two independent
applications can perform monitoring tasks and compete for
the communication channel to send out alerts, and both
of them will get the availability guarantees we discussed,
without either having to trust the other. It is in this sense
that our platform is truly an open system: progress and real-
time guarantees can be offered to a number of protected
applications that run at the same priority.

Considering the last guarantee, we note that equivalent guarantees
can only be given to competing applications up to an upper limit
depending on the nature of the resource. Intuitively, no realistic
guarantee can be given if the requirements exceed the available
schedulability of the resource. This restriction spans across all
shared resources such as time (managed and guaranteed by the
scheduler), and attached peripherals (such as the temperature sen-
sor and communication interface drivers). We see it as a software
responsibility of each (trusted) resource driver to only provide a
guarantee if this guarantee can realistically be given.

In summary, these guarantees make it possible to ensure for
our example applications A and B that temperature alerts will be
sent out within a hard real-time bound in the presence of buggy or
malicious code on the platform. More specifically, the protected A
is capable of achieving its goals even if 8 is malicious and attempts
to monopolize resources, and vice versa. In Section 5 we will show
how this simple application can be realized on our platform with
the above availability guarantees. To the best of our knowledge,
no other TEE is capable of providing these combined security and
availability guarantees.

2.4 Related Work

Most closely related to our approach are existing hardware/soft-
ware co-designs for light-weight embedded systems with a strong
emphasis on security. The key publications here are Masti et al. [25],
TrustLite [20], TyTAN [7], and Sancus [30]. We explicitly focus on
light-weight embedded systems and on related work that can be
used as a base platform for our design. Thus, we focus on related
work that at least provides spatial isolation to its software com-
ponents and that enables the deployment of mutually distrusting
enclaves. This leaves literature such as SMART [13] or VRASED [31]
out of scope. We also explicitly omit research from this list that
either focuses on higher-level embedded systems such as Cure [5]
or CHASE [10], or that targets the problem domain of real-time and
mixed-criticality systems without discussing their security. While
Masti et al. also lacks certain spatial isolation properties that would
be necessary to use it as a base platform, their solution does already
provide some availability features.

There is a wide body of work on mixed-criticality systems in
the real-time community, but for most of this literature, important
differences with our approach are (i) priorities and (ii) not aiming
for the same strong confidentiality and integrity guarantees that
enclaves offer. In mixed-criticality systems, a clear priority order is
applied to all running applications. As such, the operating system
can prioritize a closed, known set of applications and ensure the
progress of important code [8]. On an open platform, however, such
clear priority order does not exist and all dynamically deployed
applications that share a resource need to be assumed to have the
same priority. A number of designs have been proposed that do
focus on security, but for more heavy-weight processors than the
ones we consider in this paper. We will discuss all such additional
related work further in Section 2.4.2.

2.4.1 Light-weight embedded systems. We summarize the temporal
isolation guarantees given by closely related work and Aron in
Table 1. Masti et al. [25] investigate the topic of trusted scheduling
on embedded systems and present a hardware/software co-design

that, based on crafted hardware components plus an omnipotent
trusted domain software layer, can securely schedule applications
even under attack from a software adversary. In their approach,
the authors assume a conventional priority-based system and can
provide availability guarantees to the highest-priority thread. Their
approach can, furthermore, allow for guaranteed peripheral access
through a hardware-level peripheral manager that is responsible
for all peripherals on the device.

TrustLite [20] and TyTAN [7] are two security architectures
based on the Intel Siskiyou Peak platform. TrustLite utilizes an
execution-aware memory protection unit that links the program
and data sections of applications together and shields them as a
unified trustlet against interference from untrusted parties. While
TrustLite does provide secure peripherals and the ability to preempt
enclaves, it neither implements sharing of resources, a bounded
limit on atomic periods, nor guaranteed progress for any other
application than the one with the highest priority. TyTAN is an
improvement over the TrustLite platform in terms of a dynamic
deployment of applications, but it does not extend the guarantees
that are the concern of this work. Although TyTAN does provide a
version of trusted scheduling, this does not entail a strict bounded
activation latency since attackers can still trigger infinite atomic
sections. Furthermore, peripherals can be secured, but not securely
and safely shared with other applications without losing avail-
ability guarantees. Both the design of Masti et al. and TrustLite
require a static deployment of software and a platform reset is
needed to load additional applications. Sancus [30] is a program
counter-based TEE for the 16-bit MSP430 processor that can uti-
lizes its memory isolation capabilities for enclaves to also support
secure memory mapped peripherals. We introduce Sancus more
thoroughly in Section 4.1 but note that the original Sancus does not
allow the preemption of enclaves and faces the same limitations as
TrustLite and TyTAN in regards to our availability guarantees.

In contrast with earlier approaches, A1oN provides applications
with a complete set of the discussed temporal isolation guarantees.
While Masti et al. can give the largest subset of the desired guar-
antees, their solution enforces strict priorities among applications
using a static, hardware-level scheduler. This means that progress
can only be actually guaranteed for a single application with the
highest priority instead of multiple applications at once. Their so-
lution also requires applications to trust each peripheral since a
single peripheral manager manages all platform peripherals. AIoN,
however, only requires applications to trust the peripherals they uti-
lize, does not require applications to depend on any higher-priority
application outside of their TCB, and can provide progress guar-
antees to multiple applications simultaneously through a flexible,
software-defined scheduling policy.

2.4.2 Beyond light-weight embedded platforms. Outside of the scope
of what we refer to as light-weight embedded TEE processors, re-
lated approaches have been presented. In [8], Burns and Davis
provide a comprehensive review of approaches to implement mixed-
criticality systems, albeit with little consideration for security.
System designs with a focus on security that provide at least
a subset of the guarantees provided by Aron are CURE and seL4.
CURE [5] is a multicore RISC-based TEE that provides exclusive
assignment of system resources, e.g. peripherals, to single enclaves.

Table 1: Comparison of A10N to earlier work on light-weight
embedded hardware/software co-designs in regards to tem-
poral isolation guarantees. © denotes that this guarantee
can only be fulfilled for a single enclave.

. B\
N e X‘]@ﬁ o™ o

Bounded activation latency - - - v
Guaranteed progress (D) (D) (D) © v
Guaranteed device access v © () © v
Safety independence - - - - v
No trust hierarchy - - - - v

Architecture AVR | Siskiyou Peak | MSP430 |

This exclusive access allows for secure I/O operations similar to
Sancus [30] (which we extend in this paper). In addition, CURE
features novel enclave types which can, e.g., span multiple privi-
lege levels and might be interesting for mixed-criticality use cases.
However, CURE is not designed around real-time guarantees and
does not provide a notion of availability for enclaves.

Notably, the seL4 microkernel [19] enforces strong security prop-
erties with formally proven access control mechanisms. Kernel op-
erations also have verified safe upper bounds on their worst-case
execution times [6, 36] and interrupt latencies. Based on these fea-
tures, mixed-criticality support has been implemented in seL4 [23],
with similar guarantees for isolation and availability as in ATON.
However, our approach is unique in that we do not rely on a trusted
kernel for security but instead build upon a security-centric ap-
proach to hardware/software co-design. Therefore, seL4 comes
with a larger software TCB than A1oN and does not provide TEE
features such as sealing and attestation.

A number of approaches aim to build real-time systems on top
of ARM’s TrustZone TEE[2, 12, 22, 27, 33, 34]. In difference to our
work, TrustZone [1] TEEs do not implement a hardware-only TCB
as they rely on a trusted operating system to isolate processes in
the secure world; they further do not natively provide enclave at-
testation and sealing. Most importantly, these works all investigate
the impact of TEEs on real-time behavior and demonstrate the
feasibility of using TEEs in these systems. However, none provide
availability guarantees in the presence of a strong software attacker.

Azab et al. [2] proposed a TrustZone-based implementation of
a protected security monitor that is capable of securing the oper-
ating system that runs in the insecure world. While this system
monitor cannot be bypassed and operates deterministically, it does
not provide dependable scheduling of guest tasks.

Pinto et al. [33, 34] presented a virtualization solution that demon-
strated how multiple guests efficiently co-exist in isolation, and with
deterministic execution. The approach does consider an attacker
with the ability to trigger interrupts to harm system availability,
and proposes a solution based on privileged and unprivileged inter-
rupts. In difference to Alon, Pinto’s work provides integrity only at
boot time, by means of TrustZone’s secure boot process, and does
not consider dynamic updates to code or scheduling policy.

Shared Shared
resource resource

Resources

Apps access
shared resources
“| Scheduler ensures
fairness
“ [Scheduler maintains
El control over
F interrupts

Atomicity (

Attacker
application

TEE Exception
architecture engine monitor

2 cru

|:‘> Direct data access ~ “++rreeee » Relation

Figure 2: System overview with trusted components high-
lighted in green. The scheduler has exclusive control over
interrupts and can enforce a periodic scheduling, but can-
not access protected application enclaves directly.

With a specific focus on mixed-criticality, Dong et al. [12] pro-
posed and evaluated a dual-criticality approach to kernel virtualiza-
tion, which enables a real-time kernel to share the same platform
with a general-purpose operating system. No provisions are made
to address the security impact of software-level attackers.

Finally, Mukherjee et al. [27] presented a technique to enforce
the correct timing requirement of a task, along with a sufficient
test for schedulability. The paper focuses on reducing the overall
number of transitions between the insecure and secure worlds in
applications by fusing together secure sections of that application.
This allows to minimize the associated I/O traffic and improves the
temporal predictability of the system, but dissolves spatial isolation
between the secure sections.

3 DESIGN

In the following we present the design of Aron that, based on
conventional light-weight embedded TEE architectures, can bring
strong temporal isolation guarantees to multiple, mutually distrust-
ing applications. We base our prototype implementation on Sancus,
but stress that the general design of A1on is independent of the un-
derlying platform. Figure 2 shows an overview of the AION system
and its core components.

The first core component is the underlying hardware-based TEE
architecture that provides the core guarantees of confidentiality
and integrity. In the following, we focus only on TEE character-
istics that are necessary in addition to the established protection
mechanisms, e.g., how interrupts or violations of the TEE’s security
policy are handled. We are confident that these additions could be
implemented on top of all discussed light-weight embedded TEE
architectures. The second component of our design is a hardware-
based exception engine that is triggered whenever an interrupt or
violation occurs. This exception engine cannot only interrupt unpro-
tected but also protected, i.e., enclaved, applications. Furthermore,
the exception engine is triggered on any violation of a platform
policy such as reading from protected memory or jumping into the
middle of a protected code region. The third and fourth elements
of AION are an atomicity monitor and an enclaved scheduler.
The hardware-based atomicity monitor ensures that the enclaved

scheduler is the only entity that has full control over handling any
system events, e.g. interrupts or violations. For this, the atomicity
monitor implements a notion of bounded atomicity and carefully
controls interrupt behavior during context switches, e.g., when
entering an enclave. The sofware-level enclaved scheduler is the
handler of all events on the system, and orchestrates the execution
flow of the system when events occur. All four components play
together to enable the scheduler to issue fair scheduling decisions.
We will now detail these four core pillars of our design.

3.1 TEE Architecture

We build AroN around TEEs that provide memory isolation for
dynamic enclaves. From the investigated TEEs, TyTAN [7] and
Sancus [30], support these requirements natively.

In addition, AION requires two additional features that need to
exist to design our security architecture. First, violations of the
TEE security policy should not result in a reset or in blocking the
system. A system reset is a common solution to violations since
illegal writes or reads from protected memory regions may only
be detected after the offending instructions has completed. If an
architecture detects a security violation after it occurred, a system
reset prevents any malicious code to use the result or side effect of
this access. In A1on, however, the platform must not be impacted
by any offending instruction but instead proceed with an exception
and hand control over to a handler of this violation. It is crucial
that offending instructions do not complete but are instead either
stopped or their effects rolled back before control is handed over
to a violation handler in constant time. As such, the handler of the
violation must not necessarily be privileged or trusted by any party.

Second, TEE-internal hardware operations must be interruptible.
While we discuss preempting enclaves in Section 3.2, some opera-
tions of the TEE architecture may need a large amount of cycles to
complete. Common examples of such operations are cryptographic
operations or the enabling or disabling of enclaves. Adversaries in
AION are capable of arbitrary code execution and may attempt to
stall the system by issuing long-running cryptographic operations.
To prevent this, the TEE architecture must support the preemp-
tion of these operations. A successful or unsuccessful completion
must be notified by the hardware to the issuer of the operation
when control is resumed so that benign applications can restart
the operation in case of an interrupt; the policy for this must be
part of the hardware-software contract to enable developers to de-
sign enclaves that can make progress. Additionally, the hardware
must ensure that any cryptographic state is cleared and removed
from memory before interrupts are handled to prevent information
leakage. We implement our prototype of A1oN on Sancus which
builds on MSP430 and has no cache or advanced microarchitecture.
Therefore, execution time is fully deterministic and only depends
on the instruction type and memory accesses. This simplifies our
approach but does not limit generality: AToN can be implemented
on any TEE-platform for which a WCET-analysis is possible. De-
termining upper bounds for the execution of scheduler operations
is the only strict requirement for AIon.

Also note, that while remote attestation may on first glance
not seem essential to AION, attestation in AION provides remote
stakeholders with the guarantee that (i) the right code is loaded

¢

Violation Exception
type?

Mark violation in
CPU state

_No " Interrupts . Yes
enabled?

Push program counter
and platform-dependent
state registers to stack

Executing - No
enclave?

Yes

Push CPU state to enclave
Mark enclave as interrupted

Clear CPU state
Get exception handler
Pass control to handler

Figure 3: High-level flow of the exception engine. Two main
paths are distinguished: interrupts and violations. On inter-
rupts, context state is saved in the enclave. On violations, a
marKker is first set in the CPU state.

untampered in a protected application enclave; (ii) the scheduler
enclave was loaded correctly, ensuring a fair availability policy; and
(iii) expected implementations of shared drivers are used. We thus
see attestation as an integral part of how AtoN would be used in
practice.

3.2 Exception Engine

Whenever an interrupt or a policy violation occurs, the exception
engine in AION is responsible for switching from the current job to
the enclaved scheduler. This ensures that the scheduler can always
fairly schedule the next application and ensure that all applications
maintain a fair share of the resource CPU time. In its operation, the
exception engine distinguishes between two types of exceptions:
interrupts due to periodic or aperiodic events and violations of
platform policies. Figure 3 shows a high-level flow of the exception
engine. Note, that violations are always handled immediately after
the offending instruction completes but the handling of interrupts
is delayed by the platform-specific global interrupt-enable flag.
An immediate handling of violations ensures that even in atomic
sections, dangerous violations are immediately handled and the
offending job can be punished.

Handling interrupts. On interrupts, the exception engine has to
store the current state of the running job in a way that execution can
be resumed at a later point. For this, the exception engine needs to
distinguish whether the current execution is of an unprotected ap-
plication or whether an enclave is being executed. For unprotected
applications, the behavior of the exception engine is the same as for
regular platforms where usually only the current program counter
and potential state registers need to be saved on the program’s
stack. Since the running program is unprotected, the process of

storing the program state in the application’s memory region can
be a responsibility of the scheduler and be done in software.

For protected applications, however, i.e., enclaves, the exception
engine needs to store all context information of the running job in
the enclave’s protected memory. Depending on the implementation
platform, the context information usually entails all CPU registers.
This process is done in hardware because the enclaved scheduler
should not have access to the protected memory of the interrupted
enclave and can thus not perform this process in software. After
storing the context information in the enclave, all context infor-
mation is cleared before handing execution over to the enclaved
scheduler. Since enclaves can only ever be entered through pre-
defined call gates, the enclave’s entry routines must on their next
execution, furthermore, also be able to detect whether the enclave
was interrupted previously. Thus, the exception engine also leaves
a marker for the enclave that it should restore its execution con-
text instead of accepting potential execution parameters that could
overwrite a currently running execution flow. The specifics of this
marker can be left to the implementation of Alon, e.g., storing a
single bit at a known location is sufficient.

Handling violations. In contrast to interrupts, violations do not
occur during the normal behavior of a platform but are usually
the result of an unauthorized attempt by an adversarial job. We
consider two types of violations that are both handled by the excep-
tion engine: security and availability violations. Security violations
are defined by the TEE architecture and revolve around the hard-
ware protections of the TEE such as protecting memory regions or
preventing illegal jumps into the middle of protected regions. Avail-
ability violations on the other hand are introduced by the atomicity
monitor and occur whenever a program attempts to enter too long
atomic periods or attempts to illegally prolong the current atomic
period. We explain the atomicity monitor and how it enforces an
upper bound on all atomic periods below.

For both types of violation, we can assume that they are not
usually triggered by a benign job and it can be assumed that if
a job experiences one, it is either controlled by the adversary, a
victim of the adversary, or being tricked by the adversary, e.g., to
access another protected memory region through an unchecked
pointer [39]. Since the last example can be ruled out by proper input
vetting of enclave code, we design A1oN around the assumption that
any violation is the result of an adversary. To alleviate the impact
this may have on applications that do suffer a policy violation during
benign behavior, we additionally introduce a violation marker that
is set on enclave violations in the CPU context to inform the enclave
that it recently suffered a violation. The exact implementation is
left to architecture specifics, but any available bit in a status register
suffices as long as it cannot be set by software.

Figure 3 shows the behavior of storing violations on the left
side. After setting the violation marker, the whole CPU state is
stored as it would be for an interrupt. On its next entry, the enclave
can check that its last operation was aborted due to a violation.
However, if interrupts were not enabled at the time of the violation,
the exception engine does not perform this context save to ensure
that it not accidentally overwrites an old interrupt context. This
is needed since attackers could otherwise call into enclaves and
create an availability violation at the cost of the called application.

Clock] ._|

(a) Normal clix operation disables interrupts for z cycles

instruction H__dix2 Tnst T Tnst 2 Inst 3

interrupts enabled

(b) Nested clix instructions result in an atomicity violation
instruction —{__clix10 Inst 1 clix 10 ATOM_VIOL

interrupts enabled

(c) Interrupts are disabled on enclave entries for several cycles
instruction —{_iEntry Inst 1 Inst n Inst n+1

interrupts enabled

enclave entry

atomic entry period

(d) During the atomic section on enclave entries, a clix can be used
instruction —{_iEntry Inst 1 clix 10 Tnst 2

interrupts enabled

enclave entry

atomic entry period

(e) Attempting to prolong the atomic entry leads to a violation
instruction —{_JjEntry Inst 1 J Entry ATOM_VIOL

interrupts enabled

enclave entry

atomic entry period

Figure 4: Representation of the desired behavior of bounded
atomic sections. clix instructions temporarily disable inter-
rupts but cannot be nested. On enclave entry, a short atomic
period is started which can be prolonged with a clix.

If a violation occurs during the process of storing the CPU con-
text, this process is aborted and the exception engine jumps ahead
to clearing the CPU state. This ensures that the hardware cannot
be tricked into performing memory writes to areas that the current
enclave is not privileged to access.

3.3 Atomicity Monitor

To prevent attackers from impacting the availability of the system, it
is necessary to block all attempts that completely disable interrupts.
At the same time, the enclaved scheduler in A10N is the main driver
of the resource CPU time and requires special privileges in regards
to this resource. As such, the scheduler in AION is the only entity
that has the capabilities to disable interrupts on the platform. Since
the scheduler is crafted carefully, this privilege does not change the
availability guarantees of the system.

While denying any program aside from the scheduler the ability
to disable interrupts is beneficial to the availability guarantees of
the system, it is certainly not desirable to also prevent all benign
usages of atomic sections. In addition to functionality issues that
may arise for shared resources if they are interrupted in a critical
state, there are also additional concerns in the context of enclaved
programs. During entry of an enclave, atomic sections are crucial

to allow the enclave to restore its interrupt context from memory
before another interrupt context can be written over the current one.
To overcome this limitation, we introduce a special c1ix instruction
similar to the design of Masti et al. [25] which starts a bounded
atomic period. Figure 4 shows the use and several edge cases of
this clix instruction. When issuing a clix, the hardware disables
interrupts for exactly x cycles after which it automatically enables
interrupts again (Figure 4.a). Programs can choose x individually up
to an upper bound that is set by the platform designer depending on
the deployed shared resources. Any clix instruction that requests
a number of cycles larger than the upper bound and any attempt
to nest clix periods trigger an atomicity violation (Figure 4.b). We
design atomicity violations to be handled by the exception engine
as described previously and assume that the atomicity monitor
clears all current state when experiencing a violation such as the
current count of remaining cycles left in the clix period. Issuing
atomicity violations ensures that attackers cannot perform clix
instructions that are out of the bounds of the system’s designers
chosen acceptable worst-case latency between two interrupts. It,
furthermore, ensures that attackers can never prolong their granted
atomic period without at least experiencing one cycle of enabled
interrupts in which an incoming event can be processed.

While the clix instruction technically allows to perform the
critical part of an enclave entry in an atomic section, adversaries
could still issue an interrupt right at the moment when an enclave is
entered. This may lead to issues as an existing interrupt context in
the enclave could be overwritten by the adversary’s interrupt with
a new context that points to the start of the enclave entry. Such a
data loss and integrity violation is not acceptable. To prevent this,
the atomicity monitor additionally ensures that on each entry of
an enclave, i.e., on each context switch into a new protected region,
interrupts are disabled for a very limited amount of cycles as shown
in Figure 4.c. This gives the enclave entry code enough time to issue
a clix instruction of the length it needs to restore its interrupt
context. Since the exact cycle duration that each application needs
to be interruptible again may vary, we allow applications to define
this cycle length via the c1ix instruction rather than automatically
issuing a long atomic period at each enclave entry. Furthermore, this
dynamic clix length at enclave entry allows each enclave to decide
whether it wants to utilize several cycles of hardware-guaranteed
progress before the scheduler could preempt this application again.
For some applications, such a guaranteed immediate progress may
be more valuable than other progress longer after the deadline. As
can be seen in Figure 4.d, issuing a clix during the few cycles of
an atomic entry period terminates the atomic entry and seamlessly
proceeds into a clix period. However, any attempt to prolong this
atomic entry is prevented with atomicity violations (Figure 4.e).

Our atomicity design serves two main purposes: First, AIoN
allows the use of atomic sections while at the same time maintaining
hard limits on the activation latency of an arriving interrupt. Second,
the length of issued atomic sections are purely in the responsibility
of software under the restriction enforced by the hardware. This
helps in the potential attestation of code that uses atomic sections
and increases the performance of benign applications that do not
always have to enter a long atomic period if this is not necessary.

A complete overview of the atomicity state machine can be seen
in Figure 6 in Appendix A.

3.4 Enclaved Scheduler

The previous core elements of A1oN have laid the foundation for
a trusted scheduler that is in full control of the shared resource
CPU time. The exception engine ensures that all state is cleared
and control is handed over to the scheduler on all interrupts and
violations. The atomicity monitor limits the atomic periods of any
job besides the scheduler itself. To enable a scheduler to utilize this
foundation and provide trusted scheduling, however, the scheduler
must itself also be protected by the TEE architecture and, hence, run
inside an enclave. This is crucial as the scheduler can only provide
consistent and fair scheduling decisions if it is unaffected by any
attempts of the adversary and if control is always deterministically
returned to the same scheduler entry code. With the combination of
these properties, the enclaved scheduler can provide a fair real-time
scheduling of dynamic applications on an open system.

Practical implementations of A10N benefit of a timer peripheral
that is solely controlled by the scheduler. This allows the scheduler
to ensure fair scheduling for configurable time periods and can also
be used as a basis for a trusted time service for applications.

4 PROTOTYPE IMPLEMENTATION

We implemented A1oN on top of the Sancus TEE and the RIOT
operating system, specifically Sancus 2.0 as presented by Noor-
man et al. [30] and RIOT in major version 2019.10 which bases
on the original work of Baccelli et al. [3, 4]. We chose this com-
bination as Sancus is an open-source architecture based on the
16-bit TT MSP430, running at 8 MHz, and RIOT is equally available
as open-source and has support for MSP430 processors. Sancus
already provides the desired confidentiality and integrity guaran-
tees. However, certain modifications were still necessary, especially
surrounding the additional requirements A1oN makes on the TEE
architecture (cf. Section 3.1). Furthermore, because RIOT is designed
to be a highly modular priority-based operating system, certain
adjustments were required to the scheduler and the way threads
are handled to implement an open system with this OS.

In the following we briefly describe Sancus and RIOT, and then
discuss how we adapt these systems to implement our solution.
The full source code of Aron and the modified toolchains of Sancus

and RIOT are available as open-source!.

4.1 Background: Sancus and RIOT

The Sancus TEE. Sancus [28, 30] is an open-source embedded
TEE [24] with a hardware-only TCB that extends the memory access
logic and instruction set of a low-cost, low-power openMSP430 [15]
microcontroller. Sancus supports multiple mutually distrusting soft-
ware components that each consist of two contiguous memory
sections in a shared single-address-space. A hardware-level pro-
gram counter-based access control mechanism [38] enforces that
an enclave’s private data section can only be accessed by its cor-
responding code section, which can only be entered through a sin-
gle entry point. Sancus’s generic memory isolation primitive can,
furthermore, be used to provide secure driver enclaves with exclu-
sive ownership over MMIO peripheral devices that are accessed
through the address space. Since Sancus modules only feature a

!https://github.com/sancus-tee/sancus-riot

https://github.com/sancus-tee/sancus-riot

single contiguous private data section, however, secure I/O on San-
cus platforms requires these small driver modules to be entirely
written in assembly code, using only registers for data storage [29].
Sancus also provides hardware-level authenticated encryption,
key derivation, and key storage functionality by extending the CPU
with a cryptographic core. This cryptographic core can be used to
implement secure communication as well as both local and remote
attestation by employing a key hierarchy between the infrastructure
provider, the application developer, and individual enclaves. Finally,
Sancus comes with a dedicated C compiler that automates the
process of enclave creation and hides low-level concerns such as
secure linking, private call stack switching, and multiplexing user-
defined entry functions through the single physical entry point.

RIOT OS. RIOT is an open-source operating system for the IoT,
which puts special emphasis on supporting real-time applications
on resource-constrained devices [3, 4]. In contrast to other embed-
ded OS kernels, RIOT provides the full set of features expected
from an OS, ranging from hardware abstraction, kernel capabilities,
system libraries, to tooling.

RIOT is designed to be tickless, which means that the scheduler
is not executed at specific intervals but instead only when neces-
sary. The standard RIOT model is a cooperative scheduling model
where it is assumed that applications actively yield whenever they
wish to pass control over to the next application. However, to also
support periodic events, RIOT allows jobs to set timers to sleep
for a period of time. For this, RIOT accesses the timer peripheral,
tracks the passed time of the system, and maintains a list of active
timers and the thread they are connected to. This setup is ideal for
mixed-criticality systems as the highest priority job will always
be scheduled next and can run as long as necessary until it either
cooperatively yields to pass control over to the next job or until
an interrupt arrives and stops the job. For applications of the same
priority, however, RIOT assumes a fair and cooperative schedul-
ing through yields which places all other applications of the same
priority within an application’s TCB.

The RIOT scheduler can provide scheduling decisions in constant
time, i.e., in O(1) due to its reliance on a bitmask that depends on
the amount of configured priority levels. Sleeping is implemented
in O(n) due to an unlimited amount of possible timers.

4.2 Modifications to Sancus

We made multiple changes to the Sancus hardware to implement
A1on. All of these changes are made under the assumption that a
scheduler has a fixed enclave hardware ID of 1, i.e., the scheduler
is the first enclave that is loaded. Specifically, we (i) modified the
exception engine to handle interrupts and violations according to
Section 3.2, (ii) implemented an atomicity monitor component ac-
cording to Section 3.3, (iii) placed restrictions on parts of the status
register to only be modified by the scheduler, and (iv) made crypto-
graphic operations interruptible (in an abandon-restart fashion).
All changes to the Sancus architecture are backwards-compatible
with Sancus 2.0 [30] and the MSP430 specification. This was vali-
dated with the default tests provided by the OpenMSP430 project
that Sancus is based on and with new tests for cases where we
added functionality. To provide full backwards-compatibility with

Modified status register

15 14 131210119 8 7 6 5 4 3 2 1.0

IRQ V|O| Reserved |V ‘SCG‘I ’SCGO (C))IS:I(:: 8?’:) ’ GIE [N |Z |C |
—
|_) Violation bit that marks Y
whether the last interrupt Direct manipulation of these bits

occurred due to a violation is restricted to scheduler

IRQ bit that marks
whether the last interrupt
occured during an enclave

Figure 5: Overview of the status register and our changes.
Bits highlighted in blue (bits 3-7) are restricted to the sched-
uler. Bit 15 marks whether the last interrupt occurred dur-
ing an enclave. Bit 14 marks whether a violation occurred.

the specification, our availability restrictions do not come into effect
before the first enclave, i.e., the scheduler, is initialized.

In the following, we focus only on the essential aspects of our
implementation that are not immediately derived from the design
of AION as presented in Section 3. Specifically, this applies to the
exception engine, the status register, and the cryptographic core.

Sancus exception engine. Sancus 2.0 originally only supports the
preemption of non-enclave code. Thus, we extend the exception
engine to perform the tasks as outlined in Section 3.2. In our imple-
mentation, we utilize a configurable location in the enclave data
region to store the CPU context plus a violation marker when re-
ceiving an interrupt or a violation respectively. The context-saving
hardware logic is subject to the same access-control checks as the
interrupted enclave, and any violations during the processing of
an interrupt or another violation lead to the abort of the context
saving as shown in Figure 3.

In MSP430, an Interrupt Vector Table (IVT) at a fixed location in
the memory layout is used to determine the handler of an interrupt.
In our implementation, we assume that the scheduler registers itself
for all interrupts and violations, and then locks the IVT by wrapping
it in the protected section of a small driver enclave, thus preventing
any further access to the IVT.

Status register modifications. The MSP430 status register con-
tains multiple flags e.g., for arithmetic operations and is stored on
interrupts and restored together with the program counter on a
reti instruction. However, in addition to these flags, the MSP430
status register also contains flags that are considered sensitive in
A1oN. Figure 5 shows an overview of the status register and our
modifications. Most obvious, we restrict the disabling of the Global
Interrupt Enable (GIE) bit to the scheduler. However, we allow the
setting of this bit at all times which allows applications to terminate
their own clix or atomic entry period ahead of schedule. Addi-
tionally, we also restrict bits 4 to 7 to the scheduler which could be
used to completely switch off the platform, such as the CPUOFF
flag, or which switch off the internal oscillator that is used as a
timer. Furthermore, we add two flags to the reserved portion of the
status register that are set by hardware and cannot be written from
software: the IRQ flag (in bit 15) and the violation flag (in bit 14).
The violation flag in bit 14 is set by the exception engine when it
processes a violation and is the implementation of the violation
marker as described in Section 3.2.

The IRQ flag in contrast exists for purely functional reasons and
helps the scheduler to restore jobs as either unprotected code or as
enclaves. Since by default the scheduler has no reliable method of
deducing whether the hardware interrupted an enclave or unpro-
tected code, the exception engine sets the IRQ flag after clearing
the CPU state and before handing control to the scheduler.

Cryptographic core. Finally, we changed the behavior of Sancus’s
cryptographic instructions to update the Zero flag (bit 1) in the
status register to indicate whether the operation completed or was
aborted due to an interrupt arrival. The resulting abandon-restart
semantics is similar to how Intel SGX handles long-latency crypto-
graphic operations, such as einit [18, §40.3]. Specifically, whenever
an interrupt request arrives during a cryptographic operation, the
CPU resets the cryptographic core (without committing or leaking
any internal state), sets the zero flag, and updates the program
counter before state saving proceeds as usual via the exception
engine. This behavior ensures that interrupt response times cannot
be delayed by long-standing cryptographic operations (cf. require-
ments in Section 3.1). Interrupted cryptographic instructions can
be simply restarted later when they are followed by a conditional
jump that tests the zero flag.

4.3 Modifications to RIOT

In AloN, we need to protect the scheduler and its associated data
structures from outside interferences. At the same time, it is de-
sirable to provide a similar functionality as the unmodified RIOT.
Thus, we map the scheduler enclave over the RIOT scheduler and
incorporate core features of the RIOT timer. Since the scheduler
is executed on every interrupt already, we also grant it exclusive
access to the timer peripheral which we map into the protected
memory region of the scheduler. This allows scheduling decisions
not only based on expiring timers such as sleeping jobs, but it also
allows other applications to use the scheduler as a source for trusted
system timings. It, furthermore, enables the scheduler to be the only
instance that monopolizes the shared resource of CPU time. In our
prototype, the scheduler disables interrupts during its execution
and will never interrupt itself. This increases the interrupt latency
of our prototype and is not strictly necessary to uphold the defined
guarantees. With more engineering effort, the scheduler could also
be implemented to allow interrupts at carefully selected parts of its
execution paths.

As discussed above, a fair scheduling can only exist if the default
state of the system is schedulable. Any platform owner that accepts
new application to be deployed to the open system must check
that the requirements of the new application do not exceed the
capabilities of the available shared resources. If the shared resources
are schedulable, however, the A1oN scheduler can enforce a fair
share for each deployed application. For the prototype, we limit the
number of maximum running or sleeping applications but allow
the attacker to register additional applications up to this limit.

5 EXPERIMENTAL EVALUATION

We evaluate AION in two steps. First, we present a case study imple-
menting the running example from Section 2.2. Then, we provide a
cycle-accurate performance evaluation for all operations impacting
the real-time performance of the hardware and the scheduler.

10

1
2
3

4
5
6
7
8
9

def sync_input:
CLIX <cycles to complete>
return read_sensor ()

def async_output(payload):
CLIX <cycles to complete>

try:

i = buf_free(get_caller_id())
if i 1= 0:

output_buf[i] = payload
except: fail

def async_io_task:
while True:
for i in output_buf
output_buffer (i)

Listing 1: Pseudo-code of the I/O enclave I of our case study.

5.1 Case Study

We demonstrate the security and availability features of Aton by
implementing the running example from Fig. 1. Our case study fea-
tures three enclaved RIOT jobs that all run with the highest priority.
These jobs implement the application enclaves A and 8B, and an I/O
enclave 7. The latter provides an interface to synchronously read
the sensor and to asynchronously dispatch messages to a serial line.
The enclaves make use of Sancus’s TEE features [30], including
isolation guarantees and secure linking between A and 7, and 8
and 7; they can further be remotely attested. All three enclaves
schedule timer interrupts to be woken up at regular intervals.

In Listings 1 and 2 we illustrate interesting aspects of our im-
plementation. A1oN’s development toolchain is based on that of
Sancus and currently supports programming in C and assembly.
We decided to present only the enclave entry functions (as opposed
to internal functions that can only be called from within the same
enclave) in Python-like pseudo code to reduce the complexity and
focus on important security and software engineering aspects that
are enabled by AroN. The C implementation of our case study is
given in Appendix B and as part of the open-source artifact.

I/O job and APIL Following Listing 1, T provides three entry
points: sync_input returns a sensor reading; the code to operate
the MMIO resource - a few assembly instructions - reside in the
internal function read_sensor. The function first executes clix to
ensure atomic execution of this operation. Following our semantics
of clix, it is up to the developer to guarantee that sync_input
completes with the end of the requested clix period. The execution
of the clix itself is protected by the atomic entry period. Similar
to sync_input, async_output is also an atomic function. But in-
stead of performing the I/O operation immediately, the payload is
buffered. The function may throw an exception if no free buffer is
available for the specific calling context and we anticipate that I
would provide guaranteed buffers for a number of protected jobs
such as A and B, while other jobs would have to share buffers. In
our example, this decision is based on the Sancus get_caller_id
primitive, which allows 7 to identify the calling enclave. We have
hard-coded this for reasons of simplicity and discuss a more general
implementation in Section 6. Finally, async_io_task is an inter-
ruptible function to output buffered payloads from async_output.
The implementation of output_buffer would again be atomic to
ensure non-interference during the I/O operation. Indeed, I is free

1
2
3
4
5
6

def worker:
while True:
t = sync_input ()
if (t > threshold):
async_output ("WARNING")
sleep(1s)

Listing 2: Pseudo-code of the application enclaves A and 8

to implement a wide range of policies for accepting and executing
I/O operations. A and B can attest 7 to be ensured that they use
an I/O implementation suitable to implement their requirements.

Application jobs. The application enclaves A and B can be im-
plemented as illustrated in Listing 2. A single function worker will
use the functionality provided by J to acquire sensor readings, eval-
uate these readings, and, if necessary, queue a warning message
with 7. We assume that I is programmed such that our A and 8
are guaranteed a free I/O buffer once per second, thus we do not
handle the exception. Other applications, in particular code that is
not enclaved, may not enjoy these guarantees and therefore need
to handle the exception. The application then schedules a sleep of
1s and is guaranteed to be woken up by the scheduler when this
time period is elapsed, plus the scheduling margins summarized in
Table 3. Note that our application does not make use of clix and is
therefore interruptible. Making the execution of A and B entirely
atomic is neither feasible (nested clix with 7 are not allowed) nor
intended, as this would reduce the responsiveness of the overall
system. However, even if 8 would deviate from the behavior in
listing Listing 2 by performing a c1ix or causing a violation, this
would not impact the security or availability of A, which we discuss
more comprehensively in Section 6.

Our case study shows that applications and drivers can be im-
plemented such that, even in the presence of an uncooperative or
malicious application that monopolizes system resources and maxi-
mizes delays, well-behaving protected applications make progress
with deterministic latencies.

5.2 Performance Evaluation

One core performance metric of A1oN implementations is the acti-
vation latency of applications. This activation latency is the time
from when an application should be scheduled up to the time when
control is actually passed over to it and it can start executing. In the
following we consider the best and worst-case activation latencies
for our prototype. An important characteristic of our prototype
implementation is that any operation that the scheduler performs
itself is atomic, i.e., interrupts are disabled during scheduler exe-
cution so that the scheduler will not interrupt itself. In addition to
regular scheduling, the scheduler also offers multiple operations
to applications that return back to the caller or switch to another
application. This means that activation latencies of application may
be delayed by currently running scheduler operations. We first eval-
uate the performance of each scheduler operation in the best and
worst-cases and use the results from this evaluation to perform an
in-depth analysis of the activation latency of pending applications.

All timing overheads below are measured in CPU cycles and
were retrieved through repeated measurements with the proto-
type implementation in a cycle-accurate simulation of AtoN with
Verilator [37]. Note that all performance numbers depend on the

11

Table 2: Detailed overhead in observed cycles for the opera-
tions provided by the scheduler.

Scheduler operation ~ Best case (cycles) worst-case (cycles)

Create job 688 860
Exit job 512 736
Sleep 1124 1320
Yield 424 628
Get time 212

implementation of the trusted scheduler and show observed cycles
only. Our prototype can only be seen as a baseline for real-world
performance, that could be improved substantially with additional
development effort.

Table 2 shows an overview over the timing overhead of all opera-
tions that applications can request from the scheduler. All scheduler
operations are carefully designed to have a constant worst-case exe-
cution time. The remaining differences between best and worst-case
execution time mostly depend on the amount of already scheduled
or pending applications in the system. Since the prototype imple-
mentation places a sensible upper bound on the number of maxi-
mum running or sleeping applications, the worst-case execution
times are strictly bounded and cannot be extended by adversaries.
The longest operation that an adversary can attempt is to sleep
while the maximum amount of other applications are already sleep-
ing, which means that the scheduler needs to insert a new timer into
a list of the maximum length. We observe a deterministic overhead
of 1320 cycles for this operation.

Building on these first evaluation numbers, we craft an attacker
that (i) enters an adversary-controlled enclave right before the
victim deadline, (ii) executes a clix of the maximum length, and
finally (iii) enters the scheduler with the worst-case sleep opera-
tion before the clix expires. At the end of the triggered scheduler
operation, the scheduler will then detect the pending interrupt and
process that interrupt instead of returning back to the adversary
or another application. This represents the longest chain of events
that an attacker can craft before a periodic enclave is executed.
Table 3 shows the best and worst-case latencies that are possible
for such an application deadline. In the absence of an attacker (i.e.,
in the best case), interrupts are already enabled (i.e., GIE=1) when
the application is to be woken up, and the exception engine can
process the interrupt immediately. In the presence of an attacker,
however, the attacker would perform the sequence of steps as de-
scribed above in order to delay the handling of the deadline. Since
in our implementation, interrupts are disabled during scheduler
operations, this prolongs the time until an interrupt is triggered
by the time of the running operation. This bounds the worst-case
latency between an issued interrupt and its actual processing in
the scheduler by a maximum of 2330 cycles (10 cycles of atomic
entry, 1000 of clix operation, followed by the 1320 cycles of the
worst-case sleep operation). Note, that the adversary does not ben-
efit from creating a violation during the last cycles of the clix
instruction as a violation is also handled by the scheduler which
can check whether other interrupts are currently pending before
resuming execution of a job.

Processing the interrupt in hardware takes 7 cycles if an unpro-
tected job is being interrupted, while interrupting enclaved jobs

Table 3: Detailed overhead for an event that preempts a run-
ning job. Shown are measurements with default Aron pa-
rameters and the overheads in the best and worst-case. Val-
ues in parentheses show the worst-case in the absence of an
attacker and are zero for the crafted attacker scenario.

Task/Stage Best case (cycles) worst-case (cycles)
1. Interrupt arrival 0 10 + clix + 1320
2. Interrupt processing 7 (35)

3. Scheduler entry 157 (115)

4.1 Timer 1356 4075

4.2 Scheduler run 443 443

5 Scheduler resume 72 72
Activation latency 2035 5920 + clix

takes 35 cycles. The overhead stems from the additional work to
store the CPU context in the enclave versus only storing the pro-
gram counter and status register on the unprotected job’s stack.
This overhead is reversed on entering the scheduler for unprotected
code (157 cycles) versus entering the scheduler after interrupting an
enclave (115 cycles). In the crafted attacker scenario, the scheduler
can detect the pending interrupt at the end of the running operation
and before it would resume execution to the next application. Thus,
in the worst-case, steps 2 and 3 are skipped by the scheduler as it
can start processing the interrupt without needing to reenter itself.

In our prototype, processing a timer tick requires the processing
of all software timers to evaluate whether a software timer is ready
to be fired. This means that in the best case, no timer has to be
processed, leading to a latency of 1356 cycles while in the worst-case,
all 15 jobs currently have set a timer which leads to a latency of 4075
cycles. Identifying the next job to schedule takes a static duration
of 443 cycles as periodic enclaves are always scheduled with the
highest priority on the system. Resuming from the scheduler then
takes 72 cycles.

Overall, our prototype can guarantee an activation latency of
2035 cycles in the best and 6920 cycles in the worst-case. This means
that in the presence of an active adversary that controls all 14 other
threads besides the victim thread and performs the sequence of steps
as described above, our best-effort A1oN prototype can guarantee
that the first guaranteed application to be scheduled is served at the
latest 6920 cycles after its trigger occurred. We discuss below what
activation latency can be given to any application other than the
first to be scheduled if multiple applications received guarantees
simultaneously.

6 DISCUSSION AND SECURITY ANALYSIS

Confidentiality and integrity. Firstly, our reliance on TEEs and
enclaved execution protects ‘A and dependent code from a range of
attacks on confidentiality and integrity. TEEs and their limitations
are well understood in general [24] and for Sancus in particular [30].
For example, it is clear that enclaved applications must be developed
such that they are free of vulnerabilities that allow an attacker to
hijack the enclave’s control flow or to extract secrets. The TCB
reduction provided by TEEs helps to implement secure enclaves,
relying on extensive code reviews, testing, and formal verification,
which are orthogonal lines of research.

12

An important consideration to nuance the architectural confiden-
tiality guarantees offered by TEEs is information leakage through
software-exploitable side channels [14]. Fortunately, the class of
light-weight embedded systems considered by Aton have a signif-
icantly reduced microarchitectural attack surface in comparison
to notoriously complex x86 processors. In particular, known side-
channel attacks on MSP430-Sancus platforms are mostly reduced
to classic start-to-end timing [16], as well as more fine-grained in-
terrupt latency timing attacks [40]. Side channels can generally be
ruled out entirely by manually rewriting the application code to ad-
here to established constant-time programming best practices [14].
Alternatively, in the case of deterministic execution platforms such
as MSP430, static code balancing solutions can provide an auto-
mated solution, either by transparently generating compensation
code in the compiler backend [41] or statically analyzing execution
path timings at the level of the generated assembly code [11, 35].
Finally, for the particularly relevant problem of interrupt latency
timing side channels [40], recent work has proposed a provably
secure, hardware-level padding defense for a simplified version of
Sancus [9]. We leave integration of such architectural changes to
further strengthen A1oN against side channels as future work.

Guaranteed availability. Importantly, the activation latencies
from Section 5.2 apply to A and B in our case study, even in the
presence of strong software-level attackers who are capable of
manipulating all software that is outside of the TCB. Specifically,
we consider attackers that might attempt to (i) block the CPU by
performing extensive uninterruptible computations, (ii) influence
the scheduler to disrupt the execution of (other) jobs, (iii) block
I/0O resources through continuous use, or (iv) cause illegal memory
access or atomicity violations.

First, considering attack (i), a misbehaving or malicious enclave
can try and prevent progress by using the clix instruction and
potentially invoke a scheduler operation. This is limited to a fixed
number of cycles after which the scheduler will serve pending
interrupts and schedule other jobs. In A1oN, clix and scheduler
operations are the only means by which an application can prevent
interruption. Importantly, clix periods cannot overlap to form
continuous uninterruptible sections.

Alternatively, in attack (ii), the attacker could try and schedule
many short sleeps to maximize scheduling effort. We consider this
attack in our evaluation and show that it has a substantial but still
deterministic impact on the available CPU cycles for applications
(cf. Section 5.2), and that the attack does not impact the baseline
guarantees. The attack can be prevented by a scheduling policy
where sleep requests below a certain threshold are not accepted, or
where a misbehaving job is terminated.

In attack scenario (iii), attackers try to continuously use an I/O
resource. This can be ruled out by implementing clix-based atomic
interactions with I/O drivers, which are followed by a scheduler
interaction. As we have illustrated in our case study, it is feasible to
program enclaved device drivers that either synchronously or asyn-
chronously serve application enclaves, where the entry functions
for applications have a bounded execution time and return within a
single clix. This prevents the attacker from continuously blocking
a resource and guarantees deterministic worst-case latencies for
the next scheduling decision. Sancus’s secure I/O functionality [30]

can be used to guarantee that no code other than the driver enclave
has access to the memory addresses used to control the peripheral,
excluding non-driver code to interfere with the peripheral.
Finally, considering attack (iv), AION’s exception engine guar-
antees that all interrupts, including violations of platform policies,
are handled by the scheduler and do not trigger a platform reset.
The specifics under which jobs are scheduled and how violations
are handled are subject to the protected scheduler implementation.
AION provides real-time guarantees based on a deterministic
worst-case latency that is followed by M cycles of progress. By
means of specific scheduler implementations, more elaborate poli-
cies can be provided, including the “at least x % of the CPU cycles
per interval T”-guarantee from Section 2.3. For this, the scheduler
must (a) allow at most N jobs with availability guarantees, (b) im-
plement round-robin scheduling among these N jobs, and (c) run on
a platform where clix provides atomicity for M cycles. Then each
of these N tasks is guaranteed to execute at least M CPU cycles
(within a clix) of every T = (5920 + M) + (1845 + M) = (N — 1)
cycles. This is under the assumptions that N — 1 jobs are under
attacker control, all attacker jobs are placed before the victim job
in the round robin scheduling, and the attacker jobs all schedule a
timer to be woken up together with the victim. Furthermore, each
attacker job executes a maximum clix for M cycles, which ends
in a scheduler invocation where the job schedules a timer for the
next period. Thus, the first scheduled job experiences the above
calculated worst case delay while the scheduler will only need to
perform steps 1, 4.2, and 5 from Table 3 for the remaining jobs. For
our prototype implementation with 15 allowed jobs and a clix
length of 1000, the absolute worst-case activation latency for the
last-scheduled victim job is 6920 + 2845 * 14 = 46750 cycles. This
represents the absolute worst-case where the platform developer de-
cided to provide the same guarantees to 14 attacker jobs other than
the victim job and it shows that our system can give deterministic
guarantees based on highly flexible platform configurations.

Using attestation. Applications include dependent code in their
TCB, e.g. device drivers or the scheduler, and trust these for avail-
ability. The trustworthiness of this code is to be established by
validation techniques beyond the scope of this paper. Remote at-
testation of the application enclave, together with Sancus’s secure
linking mechanism [30], give the deployer the guarantee that the
application is indeed executing on a platform with the intended
properties. For this, the scheduler and I/O drivers must be provided
as enclaves and implement scheduling and access policies in code,
the identity of which is then part of the attestation procedure. En-
claves can make use of mutual attestation and rely on enclave IDs
to identify each other and provide specific guarantees, such as the
availability of output buffers for A and B in the case study.

Our case study illustrates these features in a rather static scenario
and based on fixed enclave IDs. To enable the open system that we
describe in this paper, where protected applications can be deployed
at any time and without a platform reset, applications and driver
enclaves need to provide APIs that allow an application to, e.g.,
request a guaranteed I/O buffer, and to communicate success or
failure to the deploying stakeholder after the initial attestation. This
allows the deployer to ascertain schedulability of a deployment.

13

The latter approach also enables the use of I/O devices that
require more complex access policies and that cannot complete
an I/O operation atomically. For instance, a sensor might need
to be calibrated for a specific use and multiple applications may
require different calibrations. We believe that the A1on design is
flexible enough to integrate adequate access logic for such scenarios
into driver enclaves, yet our MSP430-Sancus platform, being a
very light-weight 16-bit processor, has limitations regarding the
implementation size of application and driver logic.

Summary, limitations, and future work. As a result of our joint
spatial and temporal isolation, an application’s security is no longer
impacted by faults in other applications. Specifically, vulnerabilities
in 8 may lead to 8 being compromised, and scheduling faults
caused by 8 may lead to the termination of 8. But, these events
do not affect the security and availability of A, and vice versa.
Importantly, Aron does not impose a hierarchy of trust or criticality
on applications. We enable multiple mutually distrusting and non-
collaborative applications that operate at the same "priority" to
execute under equally strong security and availability guarantees.

We consider a hardware attacker with the ability to arbitrarily
trigger external interrupts to be out of scope for Aron. However, a
platform where the scheduler is capable of temporarily masking
these interrupts or disabling interrupts completely, would be able to
resist these attacks. We note, however, that this could compromise
the trusted time guarantees of the scheduler if a timer tick is missed.

A specific challenge of A1oN comes with the use of cryptographic
operations for attestation or secure communication, which may
take many CPU cycles to complete. Sancus [30] implements these
operations in hardware for reasons of security and performance.
While A1oN makes cryptographic operations interruptible, the state
of the cryptographic engine is lost upon interruption and the op-
eration needs to be restarted entirely. Therefore, these operation
complicate timing analysis and may prevent applications from mak-
ing progress if they cannot complete a cryptographic operation
within a clix. There are several ways to address these issues, e.g.
by making the crypto engine resumable, tuning the semantics of
clix to specific progress requirements, or relying on cryptographic
operations in software, which we will investigate in future work.

7 CONCLUSION

We presented AION, a configurable security architecture that can
preserve real-time availability guarantees for embedded systems
even in the presence of a strong software attacker. This set of
guarantees is especially of interest for open systems that execute
arbitrary dynamically deployed code from multiple, mutually dis-
trusting stakeholders which all request their same fair access to
resources. AION is the first design for modern TEE architectures
that provides a strong notion of trusted scheduling, derived from
preemption, bounded atomicity, and an enclaved scheduler. We
implemented and evaluated a prototype of A1oN on a light-weight
TEE and conclude that our system can deterministically guarantee a
worst-case latency of 6920 cycles until a protected job is scheduled.
This allows platform developers to derive more complex scheduling
policies that can enable a future class of truly open IoT systems.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund KU Leuven,
by the Flemish Research Programme Cybersecurity, and by a gift
from Intel Corporation. Fritz Alder and Jo Van Bulck are supported
by a grant of the Research Foundation — Flanders (FWO). Specific
funding was provided under the SAFETEE project by the Research
Fund KU Leuven.

REFERENCES

[1] Tiago Alves and Don Felton. 2004. TrustZone: Integrated hardware and software

[2

[10

[1

[12

[13

[14

[15

[16

—

]

]

]

[17]

(18]

[19]

[20

security. ARM white paper 3, 4 (2004), 18-24.

Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 90-102.
Emmanuel Baccelli, Cenk Giindogan, Oliver Hahm, Peter Kietzmann, Martine S
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C Schmidt, and Matthias
Wihlisch. 2018. RIOT: An open source operating system for low-end embedded
devices in the IoT. IEEE Internet of Things Journal 5, 6 (2018), 4428-4440.
Emmanuel Baccelli, Oliver Hahm, Mesut Giines, Matthias Wihlisch, and
Thomas C Schmidt. 2013. RIOT OS: Towards an OS for the Internet of Things.
In 2013 IEEE conference on computer communications workshops (INFOCOM WK-
SHPS). IEEE, 79-80.

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A Security
Architecture with CUstomizable and Resilient Enclaves. In Proceedings of the 30th
USENIX Security Symposium.

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury, and
Gernot Heiser. 2011. Timing analysis of a protected operating system kernel. In
2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 339-348.

Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-
mann, and Patrick Koeberl. 2015. TyTAN: Tiny trust anchor for tiny devices. In
Design Automation Conference (DAC 2015). IEEE, 1-6.

Alan Burns and Robert Davis. 2019. Mixed criticality systems - a review. Depart-
ment of Computer Science, University of York, Tech. Rep (2019), 1-81.

Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano,
Jan Tobias Miihlberg, and Frank Piessens. 2020. Provably secure isolation for
interruptible enclaved execution on small microprocessors. In 33rd IEEE Computer
Security Foundations Symposium (CSF’20).

Ghada Dessouky, Shaza Zeitouni, Ahmad Ibrahim, Lucas Davi, and Ahmad-Reza
Sadeghi. 2019. CHASE: A Configurable Hardware-Assisted Security Extension
for Real-Time Systems. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 1-8.

Florian Dewald, Heiko Mantel, and Alexandra Weber. 2017. AVR Processors as a
Platform for Language-Based Security. In European Symposium on Research in
Computer Security (ESORICS). 427-445.

Pan Dong, Alan Burns, Zhe Jiang, and Xiangke Liao. 2018. Tzdks: A new trustzone-
based dual-criticality system with balanced performance. In 2018 IEEE 24th
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 59-64.

Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.
SMART: Secure and minimal architecture for (establishing a dynamic) root of
trust.. In NDSS, Vol. 12. Internet Society, 1-15.

Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary hardware.
Journal of Cryptographic Engineering 8, 1 (2018), 1-27.

Olivier Girard. 2009. openMSP430 - a synthesizable 16-bit microcontroller core
written in Verilog. https://opencores.org/project,openmsp430.

Travis Goodspeed. 2008. Practical attacks against the MSP430 BSL. In Twenty-
Fifth Chaos Communications Congress.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,
Vilhelm Sjéberg, and David Costanzo. 2016. CertiKOS: An Extensible Architecture
for Building Certified Concurrent OS Kernels. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016. USENIX Association, 653-669.

Intel Corporation. 2020. Intel 64 and IA-32 architectures software developer’s
manual — Volume 3D: System programming guide, part 4. Reference no. 332831-
072US.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 207-220.
Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
2014. TrustLite: A security architecture for tiny embedded devices. In Proceedings

14

[21

[22

[23]

[24

[25

[26

[27

[29

[30

[31

@
S

[33

[34

[35

[37

[38

[39

[40

of the Ninth European Conference on Computer Systems. ACM, Article 10, 14 pages.
Dayeol Lee, David Kohlbrenner, Kevin Cheang, Cameron Rasmussen, Kevin
Laeufer, Ian Fang, Akash Khosla, Chia-Che Tsai, Sanjit Seshia, Dawn Song, and
Krste Asanovic. 2018. Keystone: Open-source Secure Hardware Enclave. https:
//keystone-enclave.org/.

Songran Liu, Nan Guan, Zhishan Guo, and Wang Yi. 2020. MiniTEE: A Light-
weight TrustZone-Assisted TEE for Real-Time Systems. Electronics 9, 7 (2020).
Anna Lyons and Gernot Heiser. 2014. Mixed-criticality support in a high-
assurance, general-purpose microkernel. In Workshop on Mixed Criticality Systems.
9-14.

Pieter Maene, Johannes Gotzfried, Ruan De Clercq, Tilo Miiller, Felix Freiling,
and Ingrid Verbauwhede. 2017. Hardware-based trusted computing architectures
for isolation and attestation. IEEE Trans. Comput. 67, 3 (2017), 361-374.

Ramya Jayaram Masti, Claudio Marforio, Aanjhan Ranganathan, Aurélien Francil-
lon, and Srdjan Capkun. 2012. Enabling trusted scheduling in embedded systems.
In Annual Computer Security Applications Conference (ACSAC).

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy. ACM,
10:1-10:1.

Anway Mukherjee, Tanmaya Mishra, Thidapat Chantem, Nathan Fisher, and
Ryan Gerdes. 2019. Optimized trusted execution for hard real-time applications
on COTS processors. In Proceedings of the 27th International Conference on Real-
Time Networks and Systems. 50-60.

Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-
rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank
Piessens. 2013. Sancus: Low-cost trustworthy extensible networked devices with
a zero-software trusted computing base. In 22nd USENIX Security Symposium.
USENIX Association, 479-494.

Job Noorman, Jan Tobias Miihlberg, and Frank Piessens. 2017. Authentic exe-
cution of distributed event-driven applications with a small TCB. In STM 17
(LNCS), Vol. 10547. Springer, Heidelberg, 55-71.

J. Noorman, J. Van Bulck, J. Tobias Miihlberg, F. Piessens, P. Maene, B. Preneel, L
Verbauwhede, J. Gétzfried, T. Miiller, and F. Freiling. 2017. Sancus 2.0: A low-cost
security architecture for IoT devices. ACM Transactions on Privacy and Security
(TOPS) 20, 3 (2017), 7:1-7:33.

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. 2019. VRASED: A Verified Hardware/Software Co-
Design for Remote Attestation. In 28th USENIX Security Symposium (USENIX
Security 19). 1429-1446.

Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and
Frank Piessens. 2015. Secure compilation to protected module architectures. ACM
Transactions on Programming Languages and Systems (TOPLAS) 37, 2 (2015).
Sandro Pinto, Tiago Gomes, Jorge Pereira, Jorge Cabral, and Adriano Tavares.
2017. IIoTEED: an enhanced, trusted execution environment for industrial IoT
edge devices. IEEE Internet Computing 21, 1 (2017), 40-47.

Sandro Pinto, Jorge Pereira, Tiago Gomes, Mongkol Ekpanyapong, and Adriano
Tavares. 2016. Towards a TrustZone-assisted hypervisor for real-time embedded
systems. IEEE computer architecture letters 16, 2 (2016), 158-161.

Sepideh Pouyanrad, Jan Tobias Mithlberg, and Wouter Joosen. 2020. SCF MSP:
static detection of side channels in MSP430 programs. In Proceedings of the 15th
International Conference on Availability, Reliability and Security (ARES). 1-10.
Thomas Sewell, Felix Kam, and Gernot Heiser. 2017. High-assurance timing
analysis for a high-assurance real-time operating system. Real-Time Systems 53,
5(2017), 812-853.

Wilson Snyder. 2020. Verilator, the fastest Verilog/SystemVerilog simulator.
https://www.veripool.org/wiki/verilator.

Raoul Strackx, Frank Piessens, and Bart Preneel. 2010. Efficient isolation of trusted
subsystems in embedded systems. In Security and Privacy in Communication
Networks. Springer, 344-361.

Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia,
and Frank Piessens. 2019. A tale of two worlds: Assessing the vulnerability
of enclave shielding runtimes. In Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS’19). ACM.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary CPU interrupt logic. In Proceedings
of the 25th ACM Conference on Computer and Communications Security (CCS’18).
ACM.

Hans Winderix, Jan Tobias Miihlberg, and Frank Piessens. 2021. Compiler-
Assisted Hardening of Embedded Software Against Interrupt Latency Side-
Channel Attacks. In EuroS&P "21. IEEE, Washington, DC, USA.

https://opencores.org/project,openmsp430
https://keystone-enclave.org/
https://keystone-enclave.org/
https://www.veripool.org/wiki/verilator

A ATOMICITY STATE MACHINE

Figure 6 shows the complete atomicity state machine with all edge
cases.

eint,

dint,
enter_unprot,
other

nitial state|

dint,
other

clix (set ¢)

Unprotected

Unprotected)
GIE = < inside clix

eint(setc = 0)

[c==0]
clix,
enter_unprot l(esne!:;;e“da"e enter_enclave

eint,
dint,
other

enter_enclave £ N\
(&) Enclave Violation

entn
v ’

~
-

clix(set c)
clix, (c-)
enter_enclave

[e==0]

enter_enclave
(sete)

enter_unprot

clix (set ¢)
eint (set ¢ = 0)

Enclave
inside clix

Enclave
GE=1

enter_sched
(setc=0)

enter_enclave

Variables: State transitions:

t . "
(sete) Scheduler e = Counter for atomic enclave entry - clix
GIE=0 c = Counter for clix - eint
enter_unprot Legend: - dint
—>a(b) - enter_unprot

eint, Transition on a with side effect b - enter_sched
dint, --->[a] - enter_enclave
other Automatic transition on condition a - other

Figure 6: Atomicity state machine showing explicit and im-
plicit transitions from unprotected, enclaved, and sched-
uler states. Note, that interrupt transitions are not explicitly
shown in this figure but can be interpreted as enter_sched
transitions.

B CASE STUDY SOURCE CODEIN C

<msp430.h>
"uart.h"
"uart_hardware.h"
<stdio.h>
"kernel_defines.h"

1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7 #include
s #include
9

10 #define __

"secure_mintimer.h"
"log.h"
"sancus_helpers.h"

_MACRO_CLIX(clix_length) \

1 __asm__("push ri15"); \

12 __asm__("mov.w %0, ris" "i"(clix_length)); \

13 __asm__(".word 0x1389"); \

14 __asm__("pop ris");

15

16 #define

17 #define

18 #define

19 #define

20

21 /* --- I0 Enclave

22 DECLARE_SM(ioenclave,

23

24 #ifdef _HAVE_IO_THREAD

25 #define IO_BUFS 4

26 SM_DATA(ioenclave) unsigned char

27 SM_DATA(ioenclave) bool io_ready[IO_BUFS]
false};

28 #endif

_HAVE_APPA
_HAVE_APPB
_HAVE_APP_SLEEP
_HAVE_IO_THREAD

0x1234);

io_bufs[IO_BUFS] = {0, o,
= {false, false,

0, 0};
false,

15

30 // Output
31 bool SM_ENTRY (ioenclave) io_uart_write_byte(unsigned char b)

32 {

33 #ifdef _HAVE_IO_THREAD

34 // Async I/0

35 ___MACRO_CLIX(50);

36 int caller = (int) sancus_get_caller_id();
37 if (!caller || caller >= IO_BUFS) { caller = 0; }
38 if (io_readylcaller]) {

39 return (false);

40 } else {

41 io_bufs[caller] = b;

42 io_ready[caller] = true;

43 return (true);

44 3}

45 #else

46 // Sync 1/0

47 ___MACRO_CLIX(30);

48 while (UART_STAT & UART_TX_FULL) {} /7 1!
49 UART_TXD = b;

50 return (true);

51 #endif

52 }

54 // Read sensor

55 uint64_t SM_ENTRY (ioenclave) io_get_reading(void)

56 {

57 ___MACRO_CLIX(30);

58 return (secure_mintimer_now_usec64());
59 }

60

61 #ifdef _HAVE_IO_THREAD

62 static char sm3_unprotected_stack[THREAD_EXTRA_STACKSIZE_PRINTF];
63 // Async I/0 thread
64 void SM_ENTRY (ioenclave) io_thread(void)

65 {

66 while (true) {

67 // this could implement *any* policy.

68 for (int i = @; i < IO_BUFS; i++) {

69 if (io_ready[il) {

70 ___MACRO_CLIX(30);

71 while (UART_STAT & UART_TX_FULL) {3} // !!

72 UART_TXD = io_bufs[il;

73 io_ready[i] = false;

74 3}

75 3

76 #ifdef _HAVE_APP_SLEEP

77 ___MACRO_CALL_SLEEP_FROM_SM(0x0100, 0x0001, ioenclave)
78 #endif

79 3}

80 return;

81 }

82 #endif

83

84 /% === APP A mmm oo oo oo oo */
85 #ifdef _HAVE_APPA

86 static char sml_unprotected_stack[THREAD_EXTRA_STACKSIZE_PRINTF];
87 DECLARE_SM (appa, 0x1234);

88

89 SM_DATA(appa) uint64_t reading_a = 0;

90

91 void SM_ENTRY (appa) a_entry(void)

92 {

93 printf2("A: ID %d, called by %d\n",

94 sancus_get_self_id(), sancus_get_caller_id());
95

96 while (true) {

97 reading_a = io_get_reading();

98 printf1("A: t is %lu\n", reading_a);

99 if (reading_a >= 50000) { io_uart_write_byte('A'); 3}
100 #ifdef _HAVE_APP_SLEEP

101 ___MACRO_CALL_SLEEP_FROM_SM(0x0100, 0x0001, appa)
102 #endif

103 3}

104 }

105 #endif

106

107

R/ oo PP [ooossscoccooccocoooooooooonoooossoossooooooooooomo

109 #ifdef _HAVE_APPB

110 static char sm2_unprotected_stack[THREAD_EXTRA_STACKSIZE_PRINTFIJ;

111 DECLARE_SM (appb, 0x1234);

112

113 SM_DATA (appb) uint64_t reading_b = 0;

114

115 void SM_ENTRY (appb) b_entry(void)

116 {

117 printf2("B: ID %d, called by %d\n",

118 sancus_get_self_id (), sancus_get_caller_id());

119

120 while (true) {

121 reading_b = io_get_reading();

122 printf1("B: t is %lu\n", reading_b);

123 if (reading_b >= 50000) { io_uart_write_byte('B'); }

124 #ifdef _HAVE_APP_SLEEP

125 ___MACRO_CALL_SLEEP_FROM_SM(0x0100, 0x0001, appb)

126 #endif

127 }

128 }

129 #endif

130

131 /* --- Unprotected Job Creation -------------------"-—-"———-~—-~——~-~——-

132 int main(void)

133 {

134 LOG_INFO (" ######## Riot on Sancus\n");

135 LOG_INFO("Case study with same prio levels\n");

136

137 while(sancus_enable(&ioenclave) == 0);

138 #ifdef _HAVE_APPA

139 while(sancus_enable (&appa) == 0);

140 #endif

141 #ifdef _HAVE_APPB

142 while(sancus_enable (&appb) == 0);

143 #endif

144

145 #ifdef _HAVE_APPA

146 thread_create_protected(

147 sm1_unprotected_stack, // Unprotected stack for
OCALLS

148 THREAD_EXTRA_STACKSIZE_PRINTF , // size of the

unprotected stack

16

149 Ty // Priority to give

150 THREAD_CREATE_WOUT_YIELD, // Thread create flag

151 SM_GET_ENTRY (appa), // SM Entry address

152 SM_GET_ENTRY_IDX (appa, a_entry), // SM IDX address

153 "A"); // Name for console
logging

154 #endif

155 #ifdef _HAVE_APPB

156 thread_create_protected(

157 sm2_unprotected_stack,

158 THREAD_EXTRA_STACKSIZE_PRINTF ,

159 1,

160 THREAD_CREATE_WOUT_YIELD,

161 SM_GET_ENTRY (appb),

162 SM_GET_ENTRY_IDX (appb, b_entry),

163 HEDE

164 #endif

165 #ifdef _HAVE_IO_THREAD

166 thread_create_protected(

167 sm3_unprotected_stack,

168 THREAD_EXTRA_STACKSIZE_PRINTF ,

169 1,

170 THREAD_CREATE_WOUT_YIELD,

171 SM_GET_ENTRY (ioenclave),

172 SM_GET_ENTRY_IDX (ioenclave, io_thread),

173 "I10");

174 #endif

175

176 LOG_INFO("Thread initialization done\n");

177 while(true){

178 secure_mintimer_usleep (300000) ;

179 }

180 LOG_INFO("Exiting main thread by shutting down CPU\n");

181 sched_shut_down () ;

182

183 UNREACHABLE () ;

184 return 0;

185 }

Listing 3: Source code of our case study implementation
in C. Note that two while-loops in 1.48 and 1.71 do have
deterministic execution time unless there is a hardware

fault.

	Abstract
	1 Introduction
	2 Problem and Assumptions
	2.1 Generalized Base Platform
	2.2 A Running Example
	2.3 Security & Availability Guarantees
	2.4 Related Work

	3 Design
	3.1 TEE Architecture
	3.2 Exception Engine
	3.3 Atomicity Monitor
	3.4 Enclaved Scheduler

	4 Prototype Implementation
	4.1 Background: Sancus and RIOT
	4.2 Modifications to Sancus
	4.3 Modifications to RIOT

	5 Experimental Evaluation
	5.1 Case Study
	5.2 Performance Evaluation

	6 Discussion and Security Analysis
	7 Conclusion
	References
	A Atomicity State Machine
	B Case Study Source Code in C

