
Microarchitectural Side-Channel Attacks

for Privileged Software Adversaries

A review & perspective

Jo Van Bulck

CIF Review, Leuven, October 28, 2021

� imec-DistriNet, KU Leuven Q jo.vanbulck@cs.kuleuven.be

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be

The big picture: Enclaved execution attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base

1

The big picture: Enclaved execution attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation

1

The big picture: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side channels!

1

The big picture: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Xu et al. “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, IEEE S&P 2015

1

Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We recover metadata and data

2

Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We recover metadata and data

2

Idea 1: Privileged interrupts for

side-channel amplification

Case study: Comparing a secret password

1 vo i d check pwd (cha r ∗ i n pu t)

2 {
3 f o r (i n t i =0; i < PWD LEN; i++)

4 i f (i n pu t [i] != pwd [i])

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

3

Case study: Comparing a secret password

1 vo i d check pwd (cha r ∗ i n pu t)

2 {
3 f o r (i n t i =0; i < PWD LEN; i++)

4 i f (i n pu t [i] != pwd [i])

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

3

Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

4

Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

4

SGX-Step: Executing enclaves one instruction at a time

SGX-Step

https://github.com/jovanbulck/sgx-step

5

https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT

5

SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT

INTERRUPT

5

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

ERESUME

OS kernel

Interrupt handler

Van Bulck et al. “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017. 5

Demo: Building a deterministic password oracle with SGX-Step

6

Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”, CCS 2019.

SGX-Step: Enabling a new line of high-precision enclave attacks

Temporal

resolution

APIC PTE Desc

Yr Attack IR
Q

IP
I

#PF
A/D

PPN
GDT

ID
T

Drv

’15 Ctrl channel ∼ Page # # # # # 3

’16 AsyncShock ∼ Page # # # # # # –
’17 CacheZoom 7 > 1 # # # # # # 3

’17 Hahnel et al. 7 0 - > 1 # # # # # 3

’17 BranchShadow 7 5 - 50 # # # # # # 7

’17 Stealthy PTE ∼ Page # # # # 3

’17 DarkROP ∼ Page # # # # # # 3

’17 SGX-Step 3 0 - 1 # # # # 3

’18 Off-limits 3 0 - 1 # # # # 3

’18 Single-trace RSA ∼ Page # # # # # # 3

’18 Foreshadow 3 0 - 1 # # # # 3

’18 SgxPectre ∼ Page # # # # # # 3

’18 CacheQuote 7 > 1 # # # # # # 3

’18 SGXlinger 7 > 1 # # # # # # 7

’18 Nemesis 3 1 # # # 3

Temporal

resolution

APIC PTE Desc

Yr Attack IR
Q

IP
I

#PF
A/D

PPN
GDT

ID
T

Drv

’19 Spoiler 3 1 # # # # 3

’19 ZombieLoad 3 0 - 1 # # # 3

’19 Tale of 2 worlds 3 1 # # # 3

’19 MicroScope ∼ 0 - Page # # # # # # 7

’20 Bluethunder 3 1 # # # # # 3

’20 Big troubles ∼ Page # # # # # # 3

’20 Viral primitive 3 1 # # # 3

’20 CopyCat 3 1 # # # 3

’20 LVI 3 1 # # 3

’20 A to Z ∼ Page # # # # # # 3

’20 Frontal 3 1 # # # 3

’20 CrossTalk 3 1 # # # # 3

’20 Online template ∼ Page # # # # # # 3

’20 Déjà Vu NSS ∼ Page # # # # # # 3

8

Idea 2: Privileged interrupts for

microarchitectural leakage

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y

Instruction (interrupt number)

Enclave x-ray: Start-to-end trace enclaved execution

9

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Enclave x-ray: Keymap bit traversal (ground truth)

9

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

2

3

4

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Instruction (interrupt number)

0 (no press) 1 (key pressed) 0 (no press)

9

Nemesis attack: Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

10

Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: Reconstruct microarchitectural state

load cache hit

load cache miss

IRQ latency (cycles)

F
re

q
u

e
n

c
y

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018.

11

Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: Many more → see paper!

load cache hit

load cache miss

IRQ latency (cycles)

F
re

q
u

e
n

c
y

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018.
11

Idea 3: Privileged page tables

for transient data leakage

Thesis outline: Privileged side channels (interrupt latency)

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mem

 Enclave app

CPU

2

Metadata

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018.

12

Thesis outline: Privileged side channels (page table accesses)

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mem

 Enclave app

CPU

2

Metadata

Van Bulck et al. “Telling Your Secrets Without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Execution”, USENIX Security 2017.

12

Thesis outline: Transient-execution attacks (Foreshadow, LVI)

Mem

OS kernel

 Enclave app

CPU

3

Metadata

Data

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX Security 2018.

Van Bulck et al. “LVI: Hijacking Transient Execution through Microarchitectural Load Value Injection”, S&P 2020.

12

Abusing out-of-order and speculative execution

time

14

Abusing out-of-order and speculative execution

trigger instruction

transient instructions

fixup

time

14

Abusing out-of-order and speculative execution

reconstruct

trigger instruction

transient instructions

fixup

time

14

The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019
15

https://transient.fail

Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

16

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com

16

https://wired.com
https://arstechnica.com

Building Foreshadow: Evade SGX abort page semantics

OS? SGX?

1 2

SGX checks prohibit unauthorized access

17

Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

SGX checks prohibit unauthorized access

17

Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

. . . but attackers can unmap enclave pages!

17

The microarchitecture behind Foreshadow

PT
walk?

L1D

vadrs

CPU micro-architecture

padrs

Tag? Pass to out-of-order

SGX?

Foreshadow-SGX: Bypass enclave isolation

18

The microarchitecture behind Foreshadow

PT
walk?

L1D

vadrs

CPU micro-architecture

Tag? Pass to out-of-order

SGX?
EPT

walk?

host
padrs

guest
padrs

Foreshadow-VMM: Bypass virtual machine isolation

18

Mitigating Foreshadow: Flush CPU microarchitecture

Mitigating Foreshadow: Flush CPU microarchitecture

Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX Security 2018.
19

Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

Van Bulck et al. “LVI: Hijacking Transient Execution through Microarchitectural Load Value Injection”, S&P 2020.
19

www.freepik.com

www.freepik.com

Mitigating LVI: Fencing vulnerable load instructions

Mitigating LVI: Fencing vulnerable load instructions

Mitigating LVI: Compiler and assembler support

-mlfence-after-load

-mlvi-hardening

-Qspectre-load

21

Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”

22

Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”

22

Outlook: Future and ongoing research directions

1. Universal attack primitives: Intel TDX, AMD SEV, ARM?

→ Adversary capabilities, hardware vs. software monitor, automation, etc.

2. Hardware extensions for next-gen TEEs: MSP430-Sancus, RISC-V

→ Provable security & limitations, availability, SMAP-like restrictions, etc.

3. Transparent shielding: Enclave runtime, compiler

→ Fuzzing, formal verification of the enclave interface

→ Compile-time hardening for incremental side-channel resistance

4. Towards transient safety: Redefining the hardware-software contract

→ Efficient containment of Spectre (long term) vs. LVI (short term)

23

Outlook: Future and ongoing research directions

1. Universal attack primitives: Intel TDX, AMD SEV, ARM?

→ Adversary capabilities, hardware vs. software monitor, automation, etc.

2. Hardware extensions for next-gen TEEs: MSP430-Sancus, RISC-V

→ Provable security & limitations, availability, SMAP-like restrictions, etc.

3. Transparent shielding: Enclave runtime, compiler

→ Fuzzing, formal verification of the enclave interface

→ Compile-time hardening for incremental side-channel resistance

4. Towards transient safety: Redefining the hardware-software contract

→ Efficient containment of Spectre (long term) vs. LVI (short term)

23

Outlook: Future and ongoing research directions

1. Universal attack primitives: Intel TDX, AMD SEV, ARM?

→ Adversary capabilities, hardware vs. software monitor, automation, etc.

2. Hardware extensions for next-gen TEEs: MSP430-Sancus, RISC-V

→ Provable security & limitations, availability, SMAP-like restrictions, etc.

3. Transparent shielding: Enclave runtime, compiler

→ Fuzzing, formal verification of the enclave interface

→ Compile-time hardening for incremental side-channel resistance

4. Towards transient safety: Redefining the hardware-software contract

→ Efficient containment of Spectre (long term) vs. LVI (short term)

23

Outlook: Future and ongoing research directions

1. Universal attack primitives: Intel TDX, AMD SEV, ARM?

→ Adversary capabilities, hardware vs. software monitor, automation, etc.

2. Hardware extensions for next-gen TEEs: MSP430-Sancus, RISC-V

→ Provable security & limitations, availability, SMAP-like restrictions, etc.

3. Transparent shielding: Enclave runtime, compiler

→ Fuzzing, formal verification of the enclave interface

→ Compile-time hardening for incremental side-channel resistance

4. Towards transient safety: Redefining the hardware-software contract

→ Efficient containment of Spectre (long term) vs. LVI (short term)

23

Thank you!

	Idea 1: Privileged interrupts for side-channel amplification
	Idea 2: Privileged interrupts for microarchitectural leakage
	Idea 3: Privileged page tables for transient data leakage

