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The big picture: Enclaved execution attack surface
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Traditional layered designs: large trusted computing base
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The big picture: Enclaved execution attack surface
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Intel SGX promise: hardware-level isolation and attestation
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The big picture: Privileged side-channel attacks
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Game-changer: Untrusted OS → new class of powerful side channels!
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The big picture: Privileged side-channel attacks
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Xu et al. “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, IEEE S&P 2015
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Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We recover metadata and data
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Idea 1: Privileged interrupts for

side-channel amplification



Case study: Comparing a secret password

1 vo i d check pwd ( cha r ∗ i n pu t )

2 {
3 f o r ( i n t i =0; i < PWD LEN; i++)

4 i f ( i n pu t [ i ] != pwd [ i ] )

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!
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Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .
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SGX-Step: Executing enclaves one instruction at a time

SGX-Step

https://github.com/jovanbulck/sgx-step
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SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT
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SGX-Step: Executing enclaves one instruction at a time
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INTERRUPT
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SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space
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Interrupt handler

Van Bulck et al. “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017. 5



Demo: Building a deterministic password oracle with SGX-Step
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Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”, CCS 2019.



SGX-Step: Enabling a new line of high-precision enclave attacks

Temporal

resolution

APIC PTE Desc

Yr Attack IR
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#PF
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PPN
GDT

ID
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Drv

’15 Ctrl channel ∼ Page # #  # # #  3

’16 AsyncShock ∼ Page # #  # # # # –
’17 CacheZoom 7 > 1  # # # # # # 3

’17 Hahnel et al. 7 0 - > 1  # # # # #  3

’17 BranchShadow 7 5 - 50  # # # # # # 7

’17 Stealthy PTE ∼ Page #  #  # #  3

’17 DarkROP ∼ Page # #  # # # # 3

’17 SGX-Step 3 0 - 1  #   # # # 3

’18 Off-limits 3 0 - 1  #  # #  # 3

’18 Single-trace RSA ∼ Page # #  # # # # 3

’18 Foreshadow 3 0 - 1  #  #  # # 3

’18 SgxPectre ∼ Page # #  # # # # 3

’18 CacheQuote 7 > 1  # # # # # # 3

’18 SGXlinger 7 > 1  # # # # # # 7

’18 Nemesis 3 1  #   # #  3

Temporal

resolution
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Yr Attack IR
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’19 Spoiler 3 1  # #  # #  3

’19 ZombieLoad 3 0 - 1  #   # #  3

’19 Tale of 2 worlds 3 1  #   # #  3

’19 MicroScope ∼ 0 - Page # #  # # # # 7

’20 Bluethunder 3 1  # # # # #  3

’20 Big troubles ∼ Page # #  # # # # 3

’20 Viral primitive 3 1  #   # #  3

’20 CopyCat 3 1  #   # #  3

’20 LVI 3 1  #    #  3

’20 A to Z ∼ Page # #  # # # # 3

’20 Frontal 3 1  #   # #  3

’20 CrossTalk 3 1  #  # # #  3

’20 Online template ∼ Page # #  # # # # 3

’20 Déjà Vu NSS ∼ Page # #  # # # # 3
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Idea 2: Privileged interrupts for

microarchitectural leakage



Nemesis attack: Inferring key strokes from Sancus enclaves
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Nemesis attack: Inferring key strokes from Sancus enclaves
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Nemesis attack: Inferring key strokes from Sancus enclaves
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Nemesis attack: Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution
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Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: Reconstruct microarchitectural state
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Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018.
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Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: Many more → see paper!
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Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018.
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Idea 3: Privileged page tables

for transient data leakage



Thesis outline: Privileged side channels (interrupt latency)
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Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018.

12



Thesis outline: Privileged side channels (page table accesses)
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Van Bulck et al. “Telling Your Secrets Without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Execution”, USENIX Security 2017.
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Thesis outline: Transient-execution attacks (Foreshadow, LVI)
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Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX Security 2018.

Van Bulck et al. “LVI: Hijacking Transient Execution through Microarchitectural Load Value Injection”, S&P 2020.
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Abusing out-of-order and speculative execution
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Abusing out-of-order and speculative execution
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Abusing out-of-order and speculative execution
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The transient-execution zoo https://transient.fail

Transient cause
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Meltdown-AD-SB

Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019
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Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018
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https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx


Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com
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Building Foreshadow: Evade SGX abort page semantics

OS? SGX?

1 2

SGX checks prohibit unauthorized access
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Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

SGX checks prohibit unauthorized access
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Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

. . . but attackers can unmap enclave pages!
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The microarchitecture behind Foreshadow
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Foreshadow-SGX: Bypass enclave isolation
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The microarchitecture behind Foreshadow
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Mitigating Foreshadow: Flush CPU microarchitecture



Mitigating Foreshadow: Flush CPU microarchitecture





Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX Security 2018.
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Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

Van Bulck et al. “LVI: Hijacking Transient Execution through Microarchitectural Load Value Injection”, S&P 2020.
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Mitigating LVI: Fencing vulnerable load instructions



Mitigating LVI: Fencing vulnerable load instructions



Mitigating LVI: Compiler and assembler support

-mlfence-after-load

-mlvi-hardening

-Qspectre-load
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Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”
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Outlook: Future and ongoing research directions

1. Universal attack primitives: Intel TDX, AMD SEV, ARM?

→ Adversary capabilities, hardware vs. software monitor, automation, etc.

2. Hardware extensions for next-gen TEEs: MSP430-Sancus, RISC-V

→ Provable security & limitations, availability, SMAP-like restrictions, etc.

3. Transparent shielding: Enclave runtime, compiler

→ Fuzzing, formal verification of the enclave interface

→ Compile-time hardening for incremental side-channel resistance

4. Towards transient safety: Redefining the hardware-software contract

→ Efficient containment of Spectre (long term) vs. LVI (short term)
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Thank you!
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