

Deepen the Defenses: A Case for Microarchitectural Isolation

Jo Van Bulck

Cybersec Europe, FutureLab Stage, Brussels, May 11, 2022

☆ imec-DistriNet, KU Leuven, Belgium ☑ jo.vanbulck@cs.kuleuven.be ¥ jovanbulck

- Postdoctoral researcher @imec-DistriNet, KU Leuven, Belgium
 - → PhD "Microarchitectural Side-Channel Attacks for Privileged Software Adversaries"
- Trust across the system stack: App > compiler > OS > CPU > μ -arch

Side-channel analysis

Transient-execution attacks (Intel x86 SGX)

Embedded trust (TI MSP430) **Hardware (noun.)** — The part of a computer that you can kick.

Software (noun.) — The reason you want to kick the hardware.

Software Engineer vs Hardware Engineer

Job Title

Software engineer

Hardware engineer

Job Description

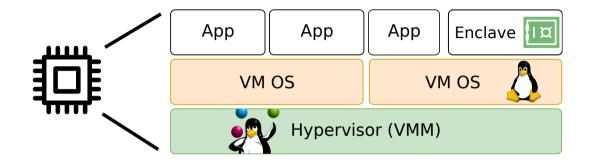
Develop, design and test software or construct, maintain computer networks and programs Research, develop and test hardware or computer equipment

Education

Software Engineering or Computer Science Degree Electrical & Computer Engineering Degree

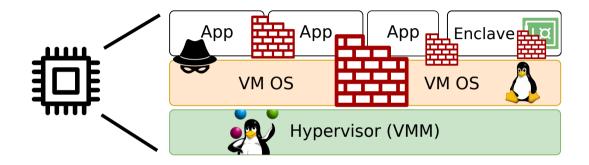
····· Skill Sets

Technology Design, Complex Problem Solving, Critical Thinking, etc. Salary

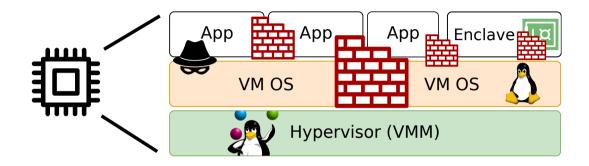


\$107,840 \$112,760 Number of Jobs >1,128,000 >87,000

ComputerCareers.org



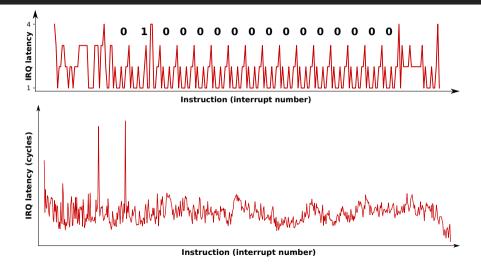
Processor security: Hardware isolation mechanisms


• Different software protection domains: Processes, VMs, enclaves

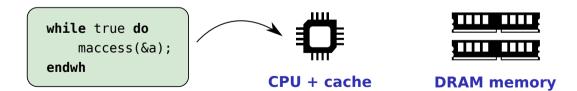
Processor security: Hardware isolation mechanisms

- Different software protection domains: Processes, VMs, enclaves
- CPU builds "walls" for memory isolation between apps and privilege levels

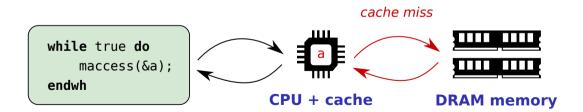
Processor security: Hardware isolation mechanisms



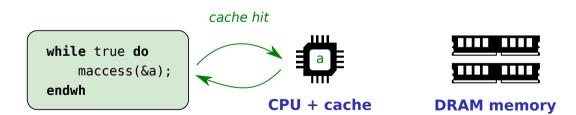
- Different software protection domains: Processes, VMs, enclaves
- CPU builds "walls" for memory isolation between apps and privilege levels
- ↔ Architectural protection walls permeate **microarchitectural side channels**!

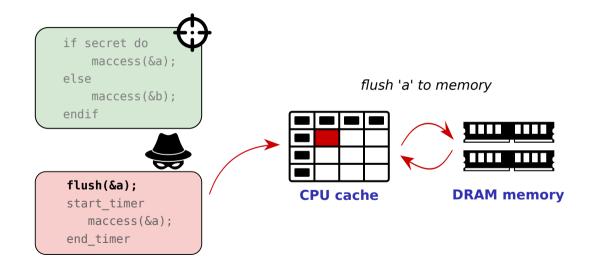


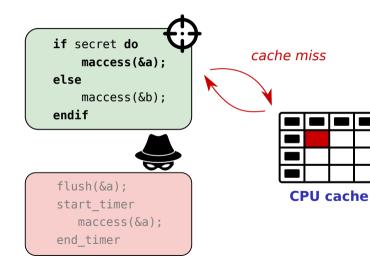
Microarchitectural timing leaks in practice



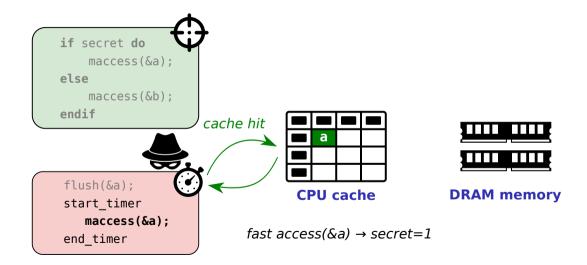
Cache principle: CPU speed \gg DRAM \rightarrow cache code/data




Cache miss: Request data from (slow) DRAM upon first use

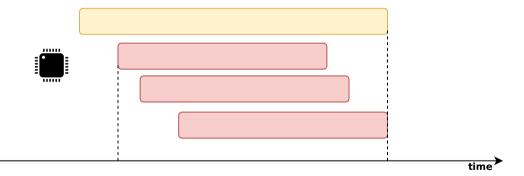


Cache timing attacks in practice: Flush+Reload

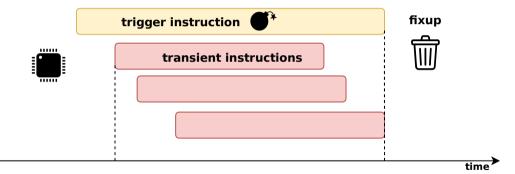

Cache timing attacks in practice: Flush+Reload

DRAM memory

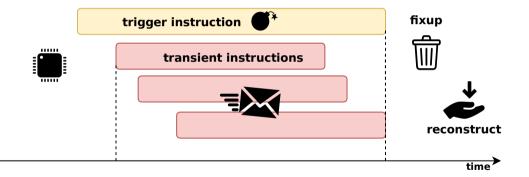
Cache timing attacks in practice: Flush+Reload



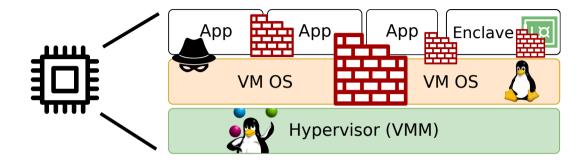
We can communicate across protection walls using microarchitectural side channels!

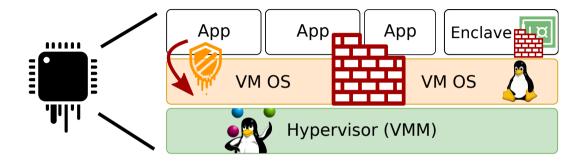

WHAT IF I TOLD YOU

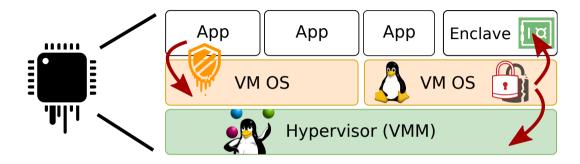
YOU CAN CHANGE RULES MID-GAME

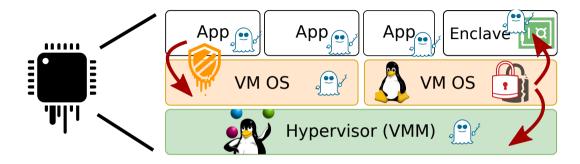

Abusing out-of-order and speculative execution

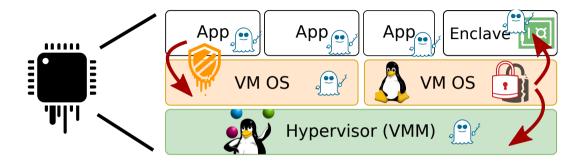
Abusing out-of-order and speculative execution

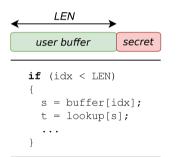

Abusing out-of-order and speculative execution

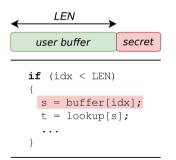



Transient-execution attacks: Welcome to the world of fun!

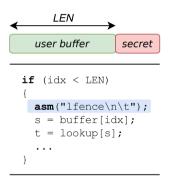



• Meltdown breaks user/kernel isolation


- Meltdown breaks user/kernel isolation
- Foreshadow breaks SGX enclave and virtual machine isolation


- Meltdown breaks user/kernel isolation
- Foreshadow breaks SGX enclave and virtual machine isolation
- Spectre breaks software-defined isolation on various levels


- Meltdown breaks user/kernel isolation
- Foreshadow breaks SGX enclave and virtual machine isolation
- Spectre breaks software-defined isolation on various levels
- ... many more but all exploit the same underlying insights!


• Programmer *intention*: no out-of-bounds accesses

- Programmer *intention*: no out-of-bounds accesses
- **Mistrain gadget** to speculatively "ahead of time" execute with *idx* ≥ *LEN* in the transient world

- Programmer *intention*: no out-of-bounds accesses
- **Mistrain gadget** to speculatively "ahead of time" execute with *idx* ≥ *LEN* in the transient world
- Side channels may leave traces after roll-back!

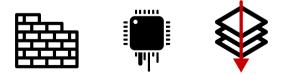
- Programmer intention: no out-of-bounds accesses
- Mistrain gadget to speculatively "ahead of time" execute with *idx* ≥ *LEN* in the transient world
- Side channels may leave traces after roll-back!
- Insert explicit **speculation barriers** to tell the CPU to halt the transient world...

SHARING IS NOT CARING

SHARING IS LOSING YOUR STUFF TO OTHERS

imgflip.com

A new golden age for computer architecture?



Conclusions and take-away

Hardware + software patches: Update your systems!

Hardware + software patches: Update your systems!

- \Rightarrow New emerging and powerful class of transient-execution attacks
- ⇒ Importance of fundamental **side-channel research**; no silver-bullet defenses
- \Rightarrow Security **cross-cuts** the system stack: hardware, OS, VMM, compiler, app

