
Microarchitectural Side-Channel Attacks

for Privileged Software Adversaries

Jo Van Bulck

FWO/IBM Innovation Award Talk, Brussels, October 14, 2021

� imec-DistriNet, KU Leuven Q jo.vanbulck@cs.kuleuven.be 7 jovanbulck

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck


www.freepik.com

www.freepik.com


www.freepik.com

www.freepik.com




https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/




Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base
3



Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation
3



Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side channels!
3





Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We leak metadata and data

4



Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We leak metadata and data

4



Idea 1: Privileged interrupts for

side-channel amplification



Case study: Comparing a secret password

p a s s w o r d

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s t a

pasta?

No!

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s s a t a

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s s a t a

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s s a t a

Overall execution time reveals correctness of individual password bytes!

5



Case study: Comparing a secret password

p a s s w o r d

p a s s a t a

Overall execution time reveals correctness of individual password bytes!

5



Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

6



Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

6



Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop
7

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop




SGX-Step: Executing enclaves one instruction at a time

SGX-Step

https://github.com/jovanbulck/sgx-step

8

https://github.com/jovanbulck/sgx-step


SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT

8



SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT

INTERRUPT

8



Demo: Building a deterministic password oracle with SGX-Step

9



Idea 2: Privileged interrupts for

microarchitectural leakage



From architecture. . .



From architecture. . . to microarchitecture

10



Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y

Instruction (interrupt number)

Enclave x-ray: Start-to-end trace enclaved execution

11



Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Enclave x-ray: Keymap bit traversal (ground truth)

11



Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

2

3

4

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Instruction (interrupt number)

0 (no press) 1 (key pressed) 0 (no press)

11



Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

12



Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: reconstruct microarchitectural state

load cache hit

load cache miss

IRQ latency (cycles)

F
re

q
u

e
n

c
y

13



Idea 3: Privileged page tables

for transient data leakage



Abusing out-of-order and speculative execution

 

time

14



Abusing out-of-order and speculative execution

trigger instruction 

transient instructions 

fixup

time

14



Abusing out-of-order and speculative execution

reconstruct

trigger instruction 

transient instructions 

fixup

time

14





Transient-execution attacks: Welcome to the world of fun!

15





Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

16

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx


Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com

16

https://wired.com
https://arstechnica.com


Building Foreshadow: Evade SGX abort page semantics

OS? SGX?

1 2

SGX checks prohibit unauthorized access

17



Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

SGX checks prohibit unauthorized access

17



Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

. . . but attackers can unmap enclave pages!

17





Mitigating Foreshadow: Flush CPU microarchitecture



Mitigating Foreshadow: Flush CPU microarchitecture





Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

19



Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

19



www.freepik.com

www.freepik.com




Mitigating LVI: Fencing vulnerable load instructions



Mitigating LVI: Fencing vulnerable load instructions



Mitigating LVI: Compiler and assembler support

-mlfence-after-load

-mlvi-hardening

-Qspectre-load

22



Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”

23



Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”

23



Conclusions and takeaway

⇒ Trusted execution environments (Intel SGX) ≠ perfect(!)

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

⇒ Security cross-cuts the system stack: hardware, OS, compiler, application

24



Thank you!


	Idea 1: Privileged interrupts for side-channel amplification
	Idea 2: Privileged interrupts for microarchitectural leakage
	Idea 3: Privileged page tables for transient data leakage

