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Enclaved execution: Reducing attack surface
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Traditional layered designs: large trusted computing base



Enclaved execution: Reducing attack surface
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Enclaved execution: Privileged side-channel attacks
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Game-changer: Untrusted OS — new class of powerful side channels!






Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?
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3. What can be leaked?



Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

— We uncover previously unknown attack avenues

k1t a
'S =) 2. How well can they be exploited in practice?
[ 4 ‘ — We develop new techniques and practical attack frameworks

3. What can be leaked?

— We leak metadata and data



Idea 1: Privileged interrupts for
side-channel amplification



Case study: Comparing a secret password
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Case study: Comparing a secret password
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Building the side-channel oracle with execution timing?
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Building the side-channel oracle with execution timing?

=\ ) Too noisy: modern x86 processors are lightning fast. . .
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Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop


https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

Copyright, 1878, by MUYBRIDGE. i MORSE’S Gallery, 417 Montgomery St., San Francisco,
" n
7 THE ﬁORSE IN OTION.

)

\7} Tllustrated by

i MUYBRIDGE. AUTOMATIC ELECTRO-PHOTOGRAPH.
*“SALLIE GARDNER,” owned by LELAND STANFORD; running atga 1.40 gait over the Palo Alto track, 19th June, 1878.



SGX-Step: Executing enclaves one instruction at a time

SGX-Step
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https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time
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SGX-Step: Executing enclaves one instruction at a time
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Demo: Building a deterministic password oracle with SGX-Step

[idt.c] DTR.base=0xfffffe0000000000/size=4095 (256 entries)

[idt.c] established user space IDT mapping at 0x7f7ff8e9a000

[idt.c] installed asm IRQ handler at 10:0x56312d19b000

[idt.c] IDT[ 45] @Ox7f7ff8e9%9a2dd = 0x56312d19b00O (seg sel 0x10); p=1; dpl=3; type=14; ist=0
[file.c] reading buffer from '/dev/cpu/1l/msr' (size=8)

[apic.c] established local memory mapping for APIC BASE=0xfee00000 at 0x7f7ff8e99000
[apic.c] APIC ID=2000000; LVTT=400ec; TDCR=0

[apic.c] APIC timer one-shot mode with division 2 (lvtt=2d/tdcr=0)

[attacker] steps=15; guess='X*¥¥¥¥k!
[attacker] found pwd len = 6

[attacker] steps=35; guess='SECRET' --> SUCCESS

[apic.c] Restored APIC LVTT=400ec/TDCR=0)

[file.c] writing buffer to '/dev/cpu/l/msr' (size=8)
[main.c] all done; counted 2260/2183 IRQs (AEP/IDT)
jo@breuer:~/sgx-step-demo$ i
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From architecture... to microarchitecture




Nemesis attack: Inferring key strokes from Sancus enclaves

A

Y

~ IRQ latency »

Instruction (interrupt number)

#.4 Enclave x-ray: Start-to-end trace enclaved execution

11



Nemesis attack: Inferring key strokes from Sancus enclaves
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Nemesis attack: Inferring key strokes from Sancus enclaves
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Single-stepping Intel SGX enclaves in practice
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Intel SGX microbenchmarks: Measuring x86 cache misses
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\ Idea 3: Privileged page tables

\@' for transient data leakage
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Abusing out-of-order and speculative execution
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Abusing out-of-order and speculative execution
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Abusing out-of-order and speculative execution
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Transient-execution attacks: Welcome to the world of fun!
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Rumors: Meltdown immunity for SGX enclaves?

Meltdown melted down everything, except
for one thing

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

ANJUNA'S SECURE-RUNTIME CAN PROTECT CRITICAL APPLICATIONS
AGAINST THE MELTDOWN ATTACK USING ENCLAVES

“[enclave memory accesses| redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018
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https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

SPECTRE-LIRE FLAW
UNDERMINES INTEL
PROCESSORS” MOST SECURE
ELEMENT

Intel’s SGX blown wide open by, you
guessed it, a speculative execution attack

Speculative execution attacks truly are the gift that keeps on giving.

https://wired.com and https://arstechnica.com
16
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Building Foreshadow: Evade SGX abort page semantics
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Building Foreshadow: Evade SGX abort page semantics
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Terminal T3 W = @ =00%) ) 1221AM
O © % Foreshadow Demo
SGX enclave: secret string at 0x7f19ee646000

Press enter to natvely read en:lave memory at address Ox7f19ee646000...

Segment 0: 0x7f19ee646000 - 0x7f19ee646317
Victim address = 0x7f19ee646316...
Actual success rate = 0/791 = 0.00 %
i Press enter to use Foreshadow to read enclave memory at address 0x7f19ee646000 ...

Segment 0: 0x7f19ee646000 - 0x7f19ee646317

Victim address = 0x7f19ee6460dd... Ox69
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Mitigating Foreshadow: Flush CPU microarchitecture




Mitigating Foreshadow: Flush CPU microarchitecture
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Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Attacker domain Enclave domain

/

[ Faulting load &encl ]

Transient gadget D
<

.
K
.t
.....
.....
............

/

A\

S

N

Page table manipulation

19



Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Attacker domain Enclave domain

Y% N

Faulting load &encl ]

Transient gadget 4
@ 7 <

----

Page table manipulation

19



FOOD POISONING

S

. m
S i ' 4
4 % oo
X
N
[
Overdue products Medicine

4
- L&‘
/' , —

Intestinal colic Diarrhea Headache

www.freepik.com


www.freepik.com

o0eo asm.5 (~/sgx-step-fresh/app/lvi/Enclave) - VIM

E/asm.S

28 .global ecall_lvi_sb_rop
29 # %rdi store_pt

EL) # %rsi oracle_pt

31 ecall_lvi_sb_rop:

32 mov S%rsp, rsp_backup(%rip)
33 lea page_b(%rip), %rsp

34 add $OFFSET, %rsp

35

36 /* transient delay */

37 clflush dummy(%rip)

38 mov dummy (%rip), %rax

39 ]

40 /* STORE TO USER ADRS */
41 movg $'R', (%rdi)

42 lea ret_gadget(%rip), %rax
43 movq %rax, 8(%rdi)

44

45 /* HIJACK TRUSTED LOAD FROM ENCLAVE STACK */
46 /* should go to do_real ret; will transiently go to ret_gadget if we fault on the stack loads */
47 pop S%rax

48 #if LFENCE

49 notq (%rsp)

50 notq (%rsp)

51 1fence

52 ret

53 #else

54 ret

55 #endif

56

57 1: jmp 1b

58 mfence

59

60 do_real_ret:

61 mov rsp_backup(%rip), %rsp
62 ret

63

Enclave/asm.S 39,0-1 845




Mitigating LVI: Fencing vulnerable load instructions




Mitigating LVI: Fencing vulnerable load instructions
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Mitigating LVI: Compiler and assembler support

GNU Assembler Adds New Options For Mitigating Load

Value Injection Attack

Nritten by Mi inG n 11 Mar 20 at 02:55 PM . 2
-mlfence-after-load Written by Michael Larabel in GNU on 11 March 2020 at 02:55 PM EDT. 14 Comments

m/)) LLVM Lands Performance-Hitting Mitigation For Intel LVI
P2 Vulnerability

Written by Michael Larabel in Software on 3 April 2020. Page 1 of 3. 20 Comments

-

-mlvi-hardening

w More Spectre Mitigations in MSVC

Visual C++
March 13th, 2020

—-(spectre-load
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Intel architectural enclaves: 1fence counts libsgx_ge.signed.so

23 fences

October 2019— “surgical precision”
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Intel architectural enclaves: 1fence counts libsgx_ge.signed.so

23 fences 49,315 fences

October 2019— “surgical precision” March 2020— “big hammer”

23



Conclusions and takeaway

= Trusted execution environments (Intel SGX) # perfect(!)
= Importance of fundamental side-channel research; no silver-bullet defenses

= Security cross-cuts the system stack: hardware, OS, compiler, application
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