e ot

Microarchitectural Side-Channel Attacks
for Privileged Software Adversaries

Jo Van Bulck
FWO/IBM Innovation Award Talk, Brussels, October 14, 2021

A imec-DistriNet, KU Leuven & jo.vanbulck@cs.kuleuven.be W jovanbulck

DistriN=t

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

www.freepik.com

SOCIAL DISTANCING

STOP

www.freepik.com

o.nz

@STOUXSIEW @XTOTL thespinoff.c

25 Microsoft Office 2001
Windows 2000

Microsoft Office for Mac

2006

! ymbian

mobile operating syster

Windows 7

2009

Windows XP

7001

Microsoft Office 2013

- 50 Large Hadron Co]lide‘r
otal code

Windows Vista

2007

Microsoft Visual Studio 2012

Facebook

US Army Future Combat System

fast batflefield network system (aborted)

Debian 5.0 codebase

e, open-source operating systerr

Mac OS X “Tiger™

104
_].(X) Car software

Mouse*

fotal DNA basepairs in genome

Dhie

https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Enclaved execution: Reducing attack surface

App] App

App

App]

>
OS kernel

Hypervi or%

TPM CPU Mem HDD

Traditional layered designs: large trusted computing base

Enclaved execution: Reducing attack surface

App

App Enclave app

OS kernel x

y i v A

Hypervisor —/

TPM] CPUdé

Intel SGX promise: hardware-level isolation and attestation

Mem M HDD

Enclaved execution: Privileged side-channel attacks

App M App Enclave app
OS kernel
Hypervisorg é
v |(Guga vem | o> |

Game-changer: Untrusted OS — new class of powerful side channels!

Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

xt -
«Q* 2. How well can they be exploited in practice?
o

3. What can be leaked?

Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

— We uncover previously unknown attack avenues

k1t a
'S =) 2. How well can they be exploited in practice?
[4 ‘ — We develop new techniques and practical attack frameworks

3. What can be leaked?

— We leak metadata and data

Idea 1: Privileged interrupts for
side-channel amplification

Case study: Comparing a secret password

password

Case study: Comparing a secret password
! No!

password

E\l
olalsltla 2

Case study: Comparing a secret password

~I\

password

plajs|tla]

Case study: Comparing a secret password

v

password

plas|tl|a

Case study: Comparing a secret password

NS Wy

password

plas|tl|a

Case study: Comparing a secret password

YWY

password

plas|tl|a

Case study: Comparing a secret password

ANOE o

password ®

plas|tl|a

Case study: Comparing a secret password

password ®

%%%Slaltla]

~I™y (MM Y

password

2

plalsislal/t|a

Na'a'e'a x_

password ®

plalsislal/t|a

AN S

password

plalsislal/t|a

\
N
~@ Overall execution time reveals correctness of individual password bytes!]

Building the side-channel oracle with execution timing?

30000

25000

20000

5000

Frequency
= =

0000

5000

[Z1 100,000 runs, strlen=1
Bl 100,000 runs, strlen=2

100 . 120

Execution time (cycles)

Building the side-channel oracle with execution timing?

=\) Too noisy: modern x86 processors are lightning fast. . .

30000
[Z1 100,000 runs, strlen=1
25000 EEm 100,000 runs, strlen=2
> 20000
v
g
3 15000
T
<
w 10000

5000

120

Execution time (cycles)

Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

Copyright, 1878, by MUYBRIDGE. i MORSE’S Gallery, 417 Montgomery St., San Francisco,
" n
7 THE ﬁORSE IN OTION.

)

\7} Tllustrated by

i MUYBRIDGE. AUTOMATIC ELECTRO-PHOTOGRAPH.
*“SALLIE GARDNER,” owned by LELAND STANFORD; running atga 1.40 gait over the Palo Alto track, 19th June, 1878.

SGX-Step: Executing enclaves one instruction at a time

SGX-Step

O https://github.com/jovanbulck/sgx-step

& Unwatch ~ 27 % Star 312 Q59 Fork 63

https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time

——> OUTPUT

"
INPUT —».

y

SGX-Step: Executing enclaves one instruction at a time

A,
0

~~
.T‘ —> OUTPUT

'
INPUT —>

D

INTERRUPT

Demo: Building a deterministic password oracle with SGX-Step

[idt.c] DTR.base=0xfffffe0000000000/size=4095 (256 entries)

[idt.c] established user space IDT mapping at 0x7f7ff8e9a000

[idt.c] installed asm IRQ handler at 10:0x56312d19b000

[idt.c] IDT[45] @Ox7f7ff8e9%9a2dd = 0x56312d19b00O (seg sel 0x10); p=1; dpl=3; type=14; ist=0
[file.c] reading buffer from '/dev/cpu/1l/msr' (size=8)

[apic.c] established local memory mapping for APIC BASE=0xfee00000 at 0x7f7ff8e99000
[apic.c] APIC ID=2000000; LVTT=400ec; TDCR=0

[apic.c] APIC timer one-shot mode with division 2 (lvtt=2d/tdcr=0)

[attacker] steps=15; guess='X*¥¥¥¥k!
[attacker] found pwd len = 6

[attacker] steps=35; guess='SECRET' --> SUCCESS

[apic.c] Restored APIC LVTT=400ec/TDCR=0)

[file.c] writing buffer to '/dev/cpu/l/msr' (size=8)
[main.c] all done; counted 2260/2183 IRQs (AEP/IDT)
jo@breuer:~/sgx-step-demo$ i

v s Idea 2: Privileged interrupts for

\ [] -
@' microarchitectural leakage
- S
\

From architecture. ..

\iu i

H
M‘Hfiiw ,.h‘.l |

Tir ™

From architecture... to microarchitecture

Nemesis attack: Inferring key strokes from Sancus enclaves

A

Y

~ IRQ latency »

Instruction (interrupt number)

#.4 Enclave x-ray: Start-to-end trace enclaved execution

11

Nemesis attack: Inferring key strokes from Sancus enclaves

A

0O 1/ 0 0 0 00O OOOOOOODO

Y

~ IRQ latency »

Instruction (interrupt number)

#.4 Enclave x-ray: Keymap bit traversal (ground truth)

11

Nemesis attack: Inferring key strokes from Sancus enclaves

0 100 00O0O0OO0ODO0ODOOOODO

~ IRQ latency »

4 <
_ 0 (no press) 1 (key pressed) 0 (no press)
ke
531 Qn,"

3
3
55
o
«
14]

Instruction (interrupt number) 11

Single-stepping Intel SGX enclaves in practice

[‘3‘ Enclave x-ray: Start-to-end trace enclaved execution]
]
g
>
£
[}
K
o W‘fw
«

Instruction (interrupt number)

12

Intel SGX microbenchmarks: Measuring x86 cache misses

‘ - - 3 -
3@ Timing leak: reconstruct microarchitectural state

load cache hit

7

Frequency

Y

7700 7900 IRQ latency (cycles) 8300 8500
13

\ Idea 3: Privileged page tables

\@' for transient data leakage
- ~
\

Abusing out-of-order and speculative execution

N
time”

14

Abusing out-of-order and speculative execution

trigger instruction ‘1 fixup

transient instructions]

—
—

N
time”

14

Abusing out-of-order and speculative execution

trigger instruction ‘1

transient instructions]

reconstruct

N
time”

14

Transient-execution attacks: Welcome to the world of fun!

T Py

-~

&) () B
< By

Inside” Inside” Inside”

Rumors: Meltdown immunity for SGX enclaves?

Meltdown melted down everything, except
for one thing

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

ANJUNA'S SECURE-RUNTIME CAN PROTECT CRITICAL APPLICATIONS
AGAINST THE MELTDOWN ATTACK USING ENCLAVES

“[enclave memory accesses| redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

16

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

SPECTRE-LIRE FLAW
UNDERMINES INTEL
PROCESSORS” MOST SECURE
ELEMENT

Intel’s SGX blown wide open by, you
guessed it, a speculative execution attack

Speculative execution attacks truly are the gift that keeps on giving.

https://wired.com and https://arstechnica.com
16

https://wired.com
https://arstechnica.com

Building Foreshadow: Evade SGX abort page semantics

. @ 05? ok
4

Page fault

SGX checks prohibit unauthorized access

17

Building Foreshadow: Evade SGX abort page semantics

K
0S? ° SGX?

til
Abort page

SGX checks prohibit unauthorized access

Page fault

17

Building Foreshadow: Evade SGX abort page semantics

ok

Abort page

Page fault

\
N
:@ ... but attackers can unmap enclave pages!

17

Terminal T3 W = @ =00%)) 1221AM
O © % Foreshadow Demo
SGX enclave: secret string at 0x7f19ee646000

Press enter to natvely read en:lave memory at address Ox7f19ee646000...

Segment 0: 0x7f19ee646000 - 0x7f19ee646317
Victim address = 0x7f19ee646316...
Actual success rate = 0/791 = 0.00 %
i Press enter to use Foreshadow to read enclave memory at address 0x7f19ee646000 ...

Segment 0: 0x7f19ee646000 - 0x7f19ee646317

Victim address = 0x7f19ee6460dd... Ox69

EXEracted BYtes === - -rcmm oo cmoe e o o e el e e S e = = e e R n S S = e = e el e R R

49 74 20 77 61 73 20 6F 6E 65 20 6F 66 20 74 68 6F 73 65 20 70 69 63 74 75 72 65 73 20 77 68 69 63 68 It was one of those pictures which

20 61 72 65 20 73 6F 20 63 6F 6E 74 72 69 76 65 64 20 74 68 61 74 20 74 68 65 20 65 79 65 73 20 66 6F are so contrived that the eyes fo

sc sc AF 77 2@ 79 6F 75 20 61 62 6F 75 er 77 sa Frln 70 sr 75 20 AN 6F 75 65 2F 20 42 49 47 20 llow you about when you move. BIG
i

E 15, 20,40 S0 0T 41 5/\C £ 7/At] 61 70 74 69 BROTHER IS WATCHING YOU, the capti
owev e /B
61 G -6 1" 6/ 63 AR]

A3 6C 61 74 20 on beneath it ran.Inside the flat
(/A -5 74 20 61 20 6C a fruity voice was reading out a 1
69 73 74 20 GF 66 20 66 69 67 75 72 65 73 ZG 77

canread ’rhe oc’ruol
enclave memory

ﬂu

MIEIBQII

Mitigating Foreshadow: Flush CPU microarchitecture

Mitigating Foreshadow: Flush CPU microarchitecture

e ’iﬁ" .

10BH | 267 1A32_FLUSH_CMD Flush Command (WO) If any one of the

Gives software a way to invalidate enumeration conditions for
structures with finer granularity than other | defined bit field positions

architectural methods. holds.
0 L1D_FLUSH: Writeback and invalidate the | If CPUID.(EAX=07H,
L1 data cache. ECX=0):EDX[28]=1
63:1 Reserved

i

74

Inside” Inside” Inside”

Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Attacker domain Enclave domain

/

[Faulting load &encl]

Transient gadget D
<

.
K
.t
.....
.....
............

/

A\

S

N

Page table manipulation

19

Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Attacker domain Enclave domain

Y% N

Faulting load &encl]

Transient gadget 4
@ 7 <

Page table manipulation

19

FOOD POISONING

S

. m
S i ' 4
4 % oo
X
N
[
Overdue products Medicine

4
- L&‘
/' , —

Intestinal colic Diarrhea Headache

www.freepik.com

www.freepik.com

o0eo asm.5 (~/sgx-step-fresh/app/lvi/Enclave) - VIM

E/asm.S

28 .global ecall_lvi_sb_rop
29 # %rdi store_pt

EL) # %rsi oracle_pt

31 ecall_lvi_sb_rop:

32 mov S%rsp, rsp_backup(%rip)
33 lea page_b(%rip), %rsp

34 add $OFFSET, %rsp

35

36 /* transient delay */

37 clflush dummy(%rip)

38 mov dummy (%rip), %rax

39]

40 /* STORE TO USER ADRS */
41 movg $'R', (%rdi)

42 lea ret_gadget(%rip), %rax
43 movq %rax, 8(%rdi)

44

45 /* HIJACK TRUSTED LOAD FROM ENCLAVE STACK */
46 /* should go to do_real ret; will transiently go to ret_gadget if we fault on the stack loads */
47 pop S%rax

48 #if LFENCE

49 notq (%rsp)

50 notq (%rsp)

51 1fence

52 ret

53 #else

54 ret

55 #endif

56

57 1: jmp 1b

58 mfence

59

60 do_real_ret:

61 mov rsp_backup(%rip), %rsp
62 ret

63

Enclave/asm.S 39,0-1 845

Mitigating LVI: Fencing vulnerable load instructions

Mitigating LVI: Fencing vulnerable load instructions
b SR
\ .\—

Mitigating LVI: Compiler and assembler support

GNU Assembler Adds New Options For Mitigating Load

Value Injection Attack

Nritten by Mi inG n 11 Mar 20 at 02:55 PM . 2
-mlfence-after-load Written by Michael Larabel in GNU on 11 March 2020 at 02:55 PM EDT. 14 Comments

m/)) LLVM Lands Performance-Hitting Mitigation For Intel LVI
P2 Vulnerability

Written by Michael Larabel in Software on 3 April 2020. Page 1 of 3. 20 Comments

-

-mlvi-hardening

w More Spectre Mitigations in MSVC

Visual C++
March 13th, 2020

—-(spectre-load

22

Intel architectural enclaves: 1fence counts libsgx_ge.signed.so

23 fences

October 2019— “surgical precision”

23

Intel architectural enclaves: 1fence counts libsgx_ge.signed.so

23 fences 49,315 fences

October 2019— “surgical precision” March 2020— “big hammer”

23

Conclusions and takeaway

= Trusted execution environments (Intel SGX) # perfect(!)
= Importance of fundamental side-channel research; no silver-bullet defenses

= Security cross-cuts the system stack: hardware, OS, compiler, application

QR i

o0

24

	Idea 1: Privileged interrupts for side-channel amplification
	Idea 2: Privileged interrupts for microarchitectural leakage
	Idea 3: Privileged page tables for transient data leakage

