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Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base
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Enclaved execution: Reducing attack surface
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Intel SGX promise: hardware-level isolation and attestation
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Enclaved execution: Privileged side-channel attacks
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Game-changer: Untrusted OS → new class of powerful side channels!
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Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We leak metadata and data
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Idea 1: Privileged interrupts for

side-channel amplification



Case study: Comparing a secret password
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Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .
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Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop
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SGX-Step: Executing enclaves one instruction at a time

SGX-Step

https://github.com/jovanbulck/sgx-step
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SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT
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Demo: Building a deterministic password oracle with SGX-Step
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Idea 2: Privileged interrupts for

microarchitectural leakage



From architecture. . .



From architecture. . . to microarchitecture
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Nemesis attack: Inferring key strokes from Sancus enclaves
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution
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Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: reconstruct microarchitectural state
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Idea 3: Privileged page tables

for transient data leakage



Abusing out-of-order and speculative execution
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Transient-execution attacks: Welcome to the world of fun!
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Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018
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Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com
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Building Foreshadow: Evade SGX abort page semantics

OS? SGX?

1 2

SGX checks prohibit unauthorized access
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Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

. . . but attackers can unmap enclave pages!
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Mitigating Foreshadow: Flush CPU microarchitecture
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Idea: Inverting Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl
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Attacker domain Enclave domain

Page table manipulation
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Mitigating LVI: Fencing vulnerable load instructions
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Mitigating LVI: Compiler and assembler support

-mlfence-after-load

-mlvi-hardening

-Qspectre-load
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Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”
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Conclusions and takeaway

⇒ Trusted execution environments (Intel SGX) ≠ perfect(!)

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

⇒ Security cross-cuts the system stack: hardware, OS, compiler, application
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Thank you!


	Idea 1: Privileged interrupts for side-channel amplification
	Idea 2: Privileged interrupts for microarchitectural leakage
	Idea 3: Privileged page tables for transient data leakage

