
Mind the Gap: Studying the Insecurity of Provably
Secure Embedded Trusted Execution Architectures

Marton Bognar
marton.bognar@kuleuven.be
imec-DistriNet, KU Leuven

3001 Leuven, Belgium

Jo Van Bulck
jo.vanbulck@kuleuven.be

imec-DistriNet, KU Leuven
3001 Leuven, Belgium

Frank Piessens
frank.piessens@kuleuven.be
imec-DistriNet, KU Leuven

3001 Leuven, Belgium

Abstract—The security claims of a system can be supported
or refuted by different kinds of evidence. On the one hand,
attack research uses empirical, experimental, inductive methods
to refute security claims. If motivated and competent attackers do
not succeed in breaking a specific security property, this provides
some support (but no definite proof) that the system is secure.

On the other hand, formal methods use mathematical, deduc-
tive methods that can prove the security of a model of the system.
The process of constructing a proof can uncover vulnerabilities
that can then be fixed. The use of formal methods can be very
powerful and is attractive because it seems to provide irrefutable
evidence of security. However, that evidence applies only to the
mathematical model, not to any actual system, and, hence, it
is important to understand the gap between the model and the
real-world system.

In this paper, we present a case study that examines this
gap for two embedded security architectures that use formal
methods to prove their security properties. Despite strong formal
evidence for security, we discover numerous attacks against the
implementations, all of which falsify proven security properties.
These attacks range from exploiting simple programming errors
to a novel DMA-based side-channel attack. The simple attacks
demonstrate that the construction of systems and proofs is error-
prone, while some of the more sophisticated attacks serve as
examples to show that formal methods alone can never guarantee
the security of a real-world system.

From our case study, we also distill actionable guidelines on
how to provide stronger evidence for the security of a system.

I. INTRODUCTION

How can we be sure that a computer system satisfies some
security property of interest? How can potential users be
convinced that the system’s security can be relied upon? How
can we provide scientific evidence for the security of a system?

These questions were already asked 35 years ago [1] and are
still at the heart of security research and practice today [2]–[4].
Still, to date, there is no consensus on what the best approach
is to provide such evidence of security.

Providing scientific evidence can be done using inductive
or deductive methods [3], [4]. Induction uses experiments and
observations on a real system to provide empirical evidence
for system properties. Deduction uses mathematical methods
to establish definite truths about a formal system model.
Both inductive and deductive methods can be applied with
varying levels of rigor. For instance, experiment design and
methodology impact the rigor of inductive methods. Deduction
can use less rigorous informal arguments, or very rigorous
(even machine-checked) formal proofs.

Attack research in security is an inductive method: it in-
volves producing attacks (breaking the security properties) on
real-world systems. If even after extensive effort, no successful
attacks are found, we may increase our belief that the system
is secure. Penetration testing and bug bounty programs can
help ensure that sufficient effort is invested. The strengths
of attack research include that it is applicable to complex
systems, even in a black-box manner, and that it can provide
strong, indisputable evidence for the insecurity of a particular
system. In fact, over the past decades, attack research papers
have regularly uncovered severe vulnerabilities in complex,
widely used systems, including processors [5] or popular web
applications [6]. Attack research can provide deep insight into
the root cause of underlying vulnerabilities and the effort and
conditions required to successfully exploit them [4], [7]. As
a result, attack research has proven indispensable for guiding
effective countermeasure design, as evident by the ongoing
arms race in – among others – the memory-safety domain [8].

An important weakness, however, is that attack research
remains an inductive method, and can, hence, fundamentally
not guarantee the security of a system. That is, even if no
attacks have been found after extensive analysis, one can never
state with certainty that attacks will not be found in the future.
It is also hard to quantify the security assurance obtained
from the observation that no attacks have been found within a
specific time window by a specific team of attack researchers.

Formal security proof, on the other hand, is a deductive
method: its strength lies in using mathematical methods to
provide strong evidence that a formal system model satisfies
specific security properties. This model can be abstract and
constructed separately from the system, but it is also possible
to have a stronger connection between the two: source code
in a programming language or hardware description language
can be seen as a system model by defining an operational
semantics, and, hence, formal methods can prove the absence
of vulnerabilities in such code. Under the assumption that the
real system executes the code as defined in the semantics, this
rules out entire classes of attacks on the real-world system.

But important weaknesses of the formal approach include
limited scalability, and the need for simplifying assumptions to
keep system models analyzable and understandable. Further-
more, whether a real-world system satisfies certain assump-
tions remains a claim that cannot be proven by deductive

methods alone. In other words, formal methods make it
possible to better focus attack efforts (focus on invalidating
assumptions made by the formal model), but can never render
attack effort unnecessary.

Some subfields of the broad security research field have de-
veloped certain maturity in providing evidence of security. In
cryptography, competitions leading to standardized algorithms,
such as TLS 1.3 [9] and post-quantum cryptography [10],
are examples where both inductive and deductive techniques
have been used to achieve sufficient security. Other subfields,
systems security in particular, are still far from a consensus
on how to provide evidence. Recent papers appearing in the
literature take widely different approaches for producing their
security arguments.

Case-study approach: The main objective of this paper
is to showcase the gap in systems security between formal,
deductive-only approaches and real-world security. To fit this
within the scope of a single paper, we follow a case study-
driven approach. Many different architectures could be se-
lected for such a case study; for our case study, we selected
small embedded systems that (i) have been published at
recognized security conferences, (ii) support trusted-execution
related functionality, (iii) are accompanied by formal (deduc-
tive) evidence proving their security properties, and (iv) have
an open-source implementation.1 We chose small embedded
systems to make an in-depth systematic analysis at our scale
possible, while trusted execution was chosen for being an
emerging security paradigm that has also received substantial
attention from a formal perspective [11]–[15].

Several systems satisfying these criteria have been published
over the past years. The two systems we examine are both
part of mature research projects with multiple collaborators
and a rich publication history, both by the original designers
[14]–[22] and by outside researchers [23], [24]. One is an
extension [14] to the Sancus system [16] that offers secure
interruptible enclaves; and one is VRASED [15], a remote
attestation framework with a number of extensions [19]–[22]
building on its security properties.

Contributions: In our case study, we provide the following
novel contributions:

• We present a significant number of attacks that directly
falsify formally proven security claims in recently pub-
lished, peer-reviewed papers, which have not been shown
insecure before. These attacks are implemented and val-
idated to work on the provided implementations with no
modifications (unless explicitly mentioned).

• We describe a novel DMA-based side-channel attack that
is effective against these systems and is interesting in its
own right.

• As a more indirect contribution, we provide evidence for
the value of combining inductive and deductive methods
(attack research and formal proofs) in systems security,
share the lessons learned from our case study, and provide

1In this paper, the implementation of a system refers to its source code,
not a physical realization.

guidelines to strengthen the security claims of a system,
supported by examples in the paper.

We want to emphasize two important points right from
the start: first, our attacks range from simple programming
errors to more advanced side-channel attacks. It can be tempt-
ing to dismiss the more straightforward attacks as simple
implementation oversights. However, if a paper claims to
avoid implementation bugs, e.g., because it “uses a verified
cryptographic software implementation and combines it with a
verified hardware design to guarantee correct implementation
of RA security properties” [15], then even simple oversights
falsify the claims in the paper. Perhaps more importantly, the
more advanced attacks demonstrate that formal methods alone
can never guarantee the complete security of a system.

Second, due to the nature of our paper, we have to be critical
of the systems in the case study. This should not be mistaken
as questioning the value or quality of these papers. In fact, we
consider these papers to be comparable or better than others in
the literature. The papers were selected based on the positive
qualities of providing open-source implementations, precise
security claims, and detailed security proofs.

Reproducibility and open-source artifacts: To ensure
the reproducibility of our findings and to encourage further
research, we made all of our experiments open-source at
https://github.com/martonbognar/gap-attacks. This repository,
furthermore, includes a continuous integration framework
that provides a fully reproducible build environment and
reference output for all our attacks, executed via a cycle-
accurate iverilog simulation of the systems’ respective
openMSP430 designs.

II. BACKGROUND AND SELECTED ARCHITECTURES

A. SancusV: Provably secure interruptible enclaves

Sancus [16] is a lightweight trusted execution environment
(TEE) [25] for embedded devices with a zero-software trusted
computing base. More specifically, the open-source Sancus
research prototype extends the openMSP430 processor ar-
chitecture [26] with a hardware-level, program-counter-based
memory access control mechanism that isolates protected
software modules, called enclaves, against all other software
on the platform, including the operating system and other
enclaves. Sancus has seen a line of follow-up work [17], [18],
[24] that modifies or extends the functionality offered by the
base architecture. In this paper, we focus on SancusV [14], the
only such system that offers formal security guarantees. The
journal version [27] of the SancusV paper provides a detailed
outline of the formal model and security proof.

1) Interrupt latency attacks: Following similar embedded
TEE designs [28]–[30], recent upstream versions [31] of
Sancus support interruptible enclaves, where the processor’s
interrupt logic is extended to securely save CPU registers
within the enclave before vectoring to the untrusted operating
system. However, while architecturally sound, this scheme has
been shown to enable subtle microarchitectural side-channel
timing leakage through the Nemesis attack [32]. Concretely,
on openMSP430 – as in most other processor architectures –

https://github.com/martonbognar/gap-attacks

interrupt requests are only handled after the current instruction
has finished executing. This means that by precisely measuring
the time it takes for an interrupt to be handled, a Nemesis
attacker can retrieve the execution length (number of clock
cycles) of the interrupted enclave instruction.

Interestingly, while start-to-end timing attacks have long
been known to enable the leakage of secret information [33],
[34], Nemesis attackers can exploit much more fine-grained,
instruction-granular timing measurements that can even leak
secrets from branches with balanced start-to-end timings. List-
ing 1 shows a minimal example of a password comparison rou-
tine [32], [34], that is carefully padded with nop instructions
to exhibit balanced start-to-end execution times, yet remains
vulnerable to an advanced Nemesis interrupt latency attacker.

1 cmp.b @r6, r7 ; if (guess != password) {
2 jz 1f
3 bis #0x1, r8 ; incorrect = true;
4 jmp 2f ; } else {
5 1: nop nop nop ; // NOPs to balance timing
6 2: ; }

Listing 1. Password comparison enclave (excerpt, based on MSP430 BSL).

Because execution lengths are different for individual in-
structions in the two branches, the attacker can determine
which branch was executing at the time of the interrupt.
Figure 1 displays the observed latencies when consecutively
interrupting every instruction for the two branches of the
enclave in Listing 1. Based on the observed interrupt latency
traces, the attacker can determine whether the comparison for
an individual password byte succeeded (thereby reducing a
brute-force attack from an exponential to a linear effort).

1
2

CMP JZ NOP NOP NOP

1
2

CMP JZ BIS JMP

Fig. 1. Interrupt latency traces for the two branches of Listing 1.

2) Interrupt latency padding defense: A recent exten-
sion [14] to Sancus, referred to as SancusV from here on,
implements secure interruptible enclaves. It also formally
proves that this modification does not introduce any new
information leakage, including from side channels.

SancusV defends enclaves against Nemesis attackers by
implementing a carefully crafted, double padding mechanism
during interrupt handling. At a high level, the hardware-level
padding defense first makes sure that the observable number
of clock cycles between issuing an interrupt and the execution
of the interrupt service routine (ISR) is always the same. To
this end, while in enclave mode, the processor will start an
internal counter once an interrupt request arrives in cycle t1.
As soon as the interrupt request is ready to be handled, i.e.,
after the currently executing enclave instruction has finished
in cycle t2, the processor will delay the execution of the ISR
until the internal counter register reaches a specified value T .
The amount of padding cycles added can, hence, be expressed
as p1 = T − (t2 − t1). Crucially, when T is carefully chosen

to be larger than or equal to the maximal execution length of
an openMSP430 instruction, an attacker will always observe
a constant interrupt latency of T cycles.

A secondary type of padding is, furthermore, required to
protect against advanced resume-to-end attackers that measure
the remainder of the interrupted enclave execution time (which
has now been shortened with the length of the interrupted
instruction). This complementary amount of padding cycles
can be expressed as p2 = (t2− t1) and is automatically added
when resuming a previously interrupted enclave via the reti
(return from interrupt) instruction.

3) Formalization outline: We provide a schematic of
SancusV’s system and attacker model in Figure 2. The pro-
cessor core is trusted, and its behavior is fully modeled as a
small-step operational semantics. A peripheral device, under
the control of the attacker, is connected to the system. In the
model, the functionality of the peripheral is abstract: it can
measure time with a clock cycle granularity and issue cycle-
accurate interrupts, and it can be configured through specially
modeled IN/OUT instructions. On the software level, there is
one trusted, but unmodeled and unverified enclave. This is the
enclave whose isolation the system is protecting. The attacker
is assumed to have control over all other software running on
the platform, including the operating system and ISRs.

Enclave Other software

Core Peripheral

Fig. 2. SancusV overview with components that are trusted and verified
(green, bold), trusted but unverified (black), and untrusted (red, italic).

For its security definition, SancusV uses the notion of
contextual equivalence. The context of an enclave contains
everything that the attacker controls: passed parameters, con-
tents of unprotected memory, the peripheral, etc. Two enclaves
are contextually equivalent if there exists no context that
allows the attacker to distinguish them. The security claim of
the system is that two enclaves are contextually equivalent
on the version of Sancus without interrupts if and only if
they are contextually equivalent on SancusV. Intuitively, this
means that two enclaves that cannot be distinguished without
interrupts also cannot be distinguished after interrupts are
introduced. This property is shown to hold using a pen-and-
paper style proof. An unverified prototype implementation of
the model is provided as an extension to the original Sancus
architecture [16], based on the openMSP430 core.

B. VRASED: Verifiable remote attestation

VRASED [15] is a remote attestation (RA) [35], [36]
framework that can calculate cryptographically strong evi-
dence about the integrity of untrusted software running on
the system. The open-source VRASED research prototype is
also based on the openMSP430 core. We limit the description
here to the original architecture but introduce multiple recently
published derived architectures [19]–[22] in Appendix A that

strongly rely on VRASED’s security arguments as the basis of
their own. Furthermore, recent work [23] has reimplemented
VRASED’s security monitor on a bare-metal microprocessor.
However, this result makes extensive modifications to the
VRASED implementation and proofs, and is not open-source,
so it is not further analyzed in this paper.

1) Remote attestation architecture: The security-related
functionality of the system is implemented by two separate
components, one at the hardware and one at the software level.

The trusted software component, SW-Att, is responsible for
calculating an HMAC signature of the untrusted software
using a secret key. SW-Att is stored in immutable ROM and
is partially verified: it includes the HMAC function from
the formally verified HACL* library [37]. SW-Att is trusted
software with access to an exclusive stack XS and secret key
K, which are isolated by the processor from all other software.

The fully verified external hardware module, HW-Mod, is
connected to selected signals from the openMSP430 core and
it monitors security violations. Particularly, HW-Mod moni-
tors (i) the program counter, (ii) memory addresses read or
written by the core, (iii) interrupts, and (iv) direct memory
access (DMA) requests by untrusted peripherals. At a high
level, HW-Mod enforces security invariants, including (P1)
access control of the key, (P2) no key leakage through memory,
and (P3) secure reset that cleans secrets. Whenever any of
the monitored signals indicate a deviation from these security
invariants, HW-Mod resets the system.

2) Formalization outline: We provide a schematic view
of the VRASED architecture in Figure 3. At the software
level, the trusted SW-Att component consists of an unverified
wrapper, manually written in C, which invokes the formally
verified HACL* library [37] to compute an HMAC over the
desired memory region using the secret key. VRASED relies
on the existing HACL* proofs [37] for functional correctness,
memory safety, secret-independent timing behavior, and de-
terministic stack memory usage of the cryptographic HMAC
primitive. HACL* is implemented and verified in the F*
programming language, which is subsequently translated into
readable C code with a proof that the translation preserves
correctness [38]. To finally obtain executable assembly code,
VRASED relies on the standard and unverified msp430-gcc
compiler [39], which is explicitly trusted to (i) preserve
semantics, and (ii) clean all registers before exiting a function.

At the hardware level, only HW-Mod has been formally
verified to preserve certain security invariants. To provide the
actual computation infrastructure for SW-Att, VRASED builds
on a slightly modified openMSP430 core, which is trusted
to adhere to several assumptions (cf. Appendix B), but its
precise function is not modeled or verified. The attacker has,
furthermore, complete control over a peripheral device that is
capable of issuing DMA requests to the core.

The designers show that VRASED’s remote attestation is
(i) sound, i.e., the HMAC is calculated from the memory
contents and a challenge; and (ii) secure, i.e., an attacker
can only forge an HMAC output that does not correspond
to the memory contents with a low probability. Verification is

SW-AttHACL* Other SW

HW-Mod Core DMA device

Fig. 3. VRASED overview with components that are trusted and verified
(green, bold), trusted but unverified (black), and untrusted (red, italic).

carried out “for all trusted components, including hardware,
software, and the composition of both, all the way up to
end-to-end notions for RA soundness and security” [15]. The
state machine model of HW-Mod is directly derived from the
hardware implementation’s Verilog files, and this model is
proven to satisfy the needed security invariants specified as
linear temporal logic (LTL) rules. The properties of SW-Att
are manually modeled based on the security properties of the
underlying HACL* library.

III. METHODOLOGY AND ATTACK TECHNIQUES

A. System and attacker model

To visualize the different system components that are in-
volved in the studied security arguments, Figure 4 presents an
abstract model that is general enough to cover both architec-
tures, yet detailed enough to offer a systematic overview of
the different components and their interactions.

Trusted SWVerified SW Other SW

CoreVerified HW Peripheral

Fig. 4. Abstract machine model with components that are trusted and verified
(green, bold), trusted but unverified (black), and untrusted (red, italic).

Trusted components are indicated in black and are at least
partially verified (green, bold). Adversary interactions are
captured by showing which components of the system are
assumed to be under direct attacker control (red, italic). In line
with the attacker models of the systems we studied, we assume
a powerful adversary who can execute arbitrary software on
the device and may additionally interact with untrusted pe-
ripherals that can be connected to the core. Physical hardware
attacks, e.g., electromagnetic probes, remain out of scope.

B. Scope of our analysis

Both systems we analyze mainly rely on deductive claims
to provide evidence for their security. To a large extent,
the deductive arguments are high quality (sometimes even
machine-checked), and we do not spend effort finding flaws
in rigorous mathematical arguments. However, we do look
for occurrences of less rigorous deductive reasoning. For
instance, rigorous proofs about separate parts of the system
are sometimes combined very informally to claim a property
of the full system.

In addition, as explained in the introduction, even a perfect
deductive argument can never guarantee the absence of attacks
on the real system. Hence, the main effort of our analysis

systematically tries to find attacks that falsify the claimed
security properties on a real-world instantiation of the systems.
We focus our efforts on trying to invalidate assumptions
regarding the system or the attacker in the deductive security
arguments. Any behavior of the real system that breaks an
assumption of the formal model is a potential vulnerability.

Finally, we assume that the desired security properties have
been stated correctly. It is certainly possible to have errors
or oversights in the statement of a security property (e.g., it
should have included availability, not only confidentiality or
integrity), but these are out of scope for our analysis.

C. Research methodology

1) Identifying falsifiable assumptions about system behav-
ior: Both papers build their deductive arguments on assump-
tions about the system. In the case of VRASED [15], the au-
thors formulate a set of 7 explicit assumptions that reportedly
encapsulates all the assumptions placed on the functionality
of the trusted processor and compiler (cf. Appendix B). In
the case of SancusV [14], the pen-and-paper definition of the
operational semantics introduces the main formal assumption:
that the real system complies with that definition. The SancusV
paper decomposes this complex assumption into simpler ones
that are easier to falsify by explicitly documenting the main
simplifications coded into the operational semantics through-
out the text. It is, furthermore, explicitly stated that violating
these assumptions in an implementation voids the proof.

The first step in our methodology is to collect these as-
sumptions. We go through the papers to collect assumptions
mentioned explicitly, and we check the deductive arguments to
see if they rely on additional implicit or hidden assumptions.
At this step, our objective is to compose a list of possibly
falsifiable assumptions that can later be empirically tested.

To identify assumptions that are likely falsifiable, we man-
ually scrutinize the formal model and the corresponding
openMSP430-based real-world implementation. This step is
enabled by the fact that both the model and the source code
for SancusV and VRASED are publicly available.

Following standard security analysis best practices [40], we
focuse our analysis on the interfaces between different trust
domains and the assumptions that components make about
interactions over these interfaces. The conceived machine
model (Figure 4) makes this task easier, as it already shows the
different interactions we have to focus on: how the peripheral
device communicates with the core, how untrusted software
interacts with trusted software, or whether the core’s defenses
can be bypassed by executing malicious untrusted code.

The final outcome of this step is a list of assumptions to
validate. In this paper, we only report the assumptions that we
managed to falsify in the next step, as only these represent
potential vulnerabilities.

2) Validating the implementation: For each assumption
identified, we then (i) validate whether the assumption holds
in the real system, and (ii) if not, determine whether the
resulting mismatch between the model and the real system

can be exploited (i.e., whether and how we can use it to break
the claimed security properties of the system).

Note that this is inductive research by nature: we try to
falsify assumptions, and if we succeed, we have evidence that
the assumption is flawed. However, even if we do not succeed
in falsifying an assumption, we can never be sure that it holds:
more effort might still lead to a counterexample.

This step involves a systematic code review of the relevant
parts of the Verilog code of the SancusV and VRASED
hardware implementations, the source code of the software
(in case of VRASED), as well as extensive empirical testing
with carefully chosen attacker code or input values.

The step from breaking an assumption to breaking a security
property relies both on attack expertise and experience, as well
as on the analysis of the deductive argument (i.e., how does the
security proof rely on the – broken – assumption). We mark
a broken assumption as exploitable once we have a working
proof-of-concept attack running on the real system.

The outcome of this step is a list of falsified assumptions,
an indication of their exploitability, and if exploitable, a
proof-of-concept attack. Note that, in line with the setup
used by SancusV and VRASED, we conducted all attack
experiments via a cycle-accurate iverilog simulation of the
openMSP430 core.

3) Exploiting missing attacker capabilities: In a third step,
we focus on the assumptions made about the attacker. These
are significantly harder to validate: assumptions about the
behavior of the system itself can be validated by running
the system since a full implementation is available. But
assumptions about the attacker cannot be validated this way:
essentially, we must determine whether the formal attacker
model used in the paper adequately captures the informal
attacker model (i.e., remote code execution on the device,
including control over untrusted DMA peripherals, but no
physical access, cf. Section III-A). For any attack we find
against the real system that is not captured by the formal
attacker model, one should ask: is the attack intentionally out
of scope, or is it a shortcoming of the formal attacker model?
Our approach in this paper is to err on the side of security:
in case of doubt, we report the attack and consider the formal
attacker model incomplete. Of course, attacks that are clearly
out of scope (e.g., physical attacks that require the attacker to
open the device) are not reported or even investigated.

For this step, we use domain expertise about openMSP430
and known attacks from the literature to identify potential
attacks abusing features that are not modeled.

This is also inductive research: we try to find attacks that
are missed, and if we succeed, this is evidence that the formal
attacker model is incomplete. However, even if we do not
succeed, there might still be attacks that we overlooked.

The outcome of this step includes both the identification
of unmodeled attack capabilities and the development of
proof-of-concept attacks using these capabilities. The attack
techniques used can originate from the literature or can be
novel in themselves (cf. Section IV).

4) Exposing deductive errors: Finally, the less rigorous
parts of the deductive arguments in both papers are reviewed,
and reasoning errors are investigated to see if they can inval-
idate the security properties of the system.

The outcome of this step is a list of errors in the formal
proof. Since these are errors in a strictly deductive argument,
in principle, no empirical validation is required to show the
error. However, we still illustrate potential attacks to show that
the deductive error leads to an actual violation of security.

D. Attack classification

We classify the attacks found using the above methodology
into the following three categories:

1) Implementation/model mismatches: Attacks that are
successful on the implementation and can be represented
in the model, but fail there. This implies a disconnect
between the formal model and the implementation, either
of which might be considered incorrect depending on the
informal description of the system.

2) Missing attacker capabilities: Attacks that are success-
ful on the implementation but cannot be represented in
the formal model due to missing features or components.

3) Deductive errors: Attacks that can be represented and
are successful within the formal model. This implies a
mistake in the formalization itself, i.e., a flaw in the proof.

IV. A NOVEL DMA CONTENTION SIDE CHANNEL

In this section, we introduce a novel DMA-based side-
channel attack effective on the openMSP430 platform, on
which both SancusV and VRASED are based. This attack
requires the attacker to have control over a DMA-capable pe-
ripheral connected to the system. More precisely, the attacker
needs to be able to read and write the signals that are exposed
to the peripheral from the core. This could happen either by
plugging in a custom untrusted peripheral; or by compromising
the firmware of an already connected sophisticated peripheral,
constituting a fully remote attack. In this section, we briefly
introduce the idea behind the attack, whereas we will expand
on its impact on the studied systems in the following sections.

A. Security concerns with DMA

On systems with no security measures, DMA requests can
access the entire memory space, thus interfering with sensitive
processes running on the system [41]. Other researchers have
abused DMA to bypass improperly configured I/O memory
management unit protection and access protected memory
regions [42]–[44]. Even without direct access to secrets, DMA
has been used as a side channel to facilitate other attacks, e.g.,
analyzing write access patterns using memory snapshots [45]
or sampling analog-digital converter data [46] to reconstruct
CPU activity.

In security architectures, DMA is usually more restricted.
On VRASED [15] and the upstream version of Sancus [31],
DMA requests are not allowed to access any memory that
belongs to protected software. The policy is the same on high-
end security architectures, for instance on Intel SGX [47].

B. Attack idea

The key idea of the attack is to measure subtle timing delays
arising from contention between an untrusted DMA device and
the trusted CPU when accessing the shared memory bus.

Transmitting or exfiltrating data through different compo-
nents of the main memory unit of an architecture is a lively
research field [48]–[51], but to the best of our knowledge,
no previous attacks utilized side-channel timing differences
of DMA requests to reconstruct the memory accesses of a
protected program running on the CPU.

CPU

M
em

or
y

ba
ck

bo
ne

Memory
DMA interface

Fig. 5. Memory bus contention between CPU and DMA on openMSP430.

On openMSP430, the CPU and DMA-enabled devices are
connected to the same memory bus through the memory
backbone, as shown in Figure 5. One memory request can
be served per clock cycle. In case of concurrent memory
accesses within the same cycle, by default the openMSP430
memory backbone gives priority to the CPU, delaying any
outstanding DMA requests. This resource contention can be
used to infer the exact, cycle-accurate timing of memory
accesses by the CPU. More specifically, by issuing a DMA
request to unprotected memory and measuring if the request
takes longer than one cycle to complete, a malicious peripheral
can infer whether the memory bus was used by the CPU in
that specific cycle.

1 2 3 4

MOV #N, &ADDRinst

mem

clk
1 2 3 4

ADD #N, &ADDRinst

mem

clk

Fig. 6. Memory traces of mov and add.

To provide a quick glance into the details of the attack, con-
sider the extracted memory traces presented in Figure 6. This
figure shows the execution of the mov and add instructions
with the same parameters. The execution length of both these
instructions is 4 cycles2, making them indistinguishable to an
instruction-granular Nemesis attacker (cf. Section II-A1). Our
DMA side channel, however, can capture the memory accesses
of the CPU at a cycle-level granularity within the execution of
both instructions. Hence, we can distinguish the instructions in
Figure 6, based on whether a CPU memory access is detected
(i.e., the DMA request is delayed) in the second cycle or not.

V. SECURITY ANALYSIS OF SANCUSV

A. Identifying falsifiable assumptions

As explained above, the security argument for SancusV [14]
relies on the main assumption that the implementation follows

2The execution length of a given instruction also depends on its operands.
Later, we will see mov and add instructions with different execution lengths.

the operational semantics defined in the pen-and-paper model.
Because this assumption is very complex and difficult to
falsify, we decomposed it into multiple sub-assumptions. We
list the ones that we falsified and found to be exploitable in the
top part of Table I. The bottom part lists exploitable features
that were not modeled in SancusV. Importantly, we did not
find any deductive errors in the SancusV proof.

TABLE I. List of falsified and exploitable assumptions found in SancusV.
IM = Implementation-model mismatch; MA = Missing attacker capability.

IM

V-B1 Instruction execution time does not depend on the context.
V-B2 The maximum instruction execution time is T = 6.
V-B3 Interrupted enclaves can only be resumed once with reti.
V-B4 Interrupted enclaves cannot be restarted from the ISR.
V-B5 The system only supports a single enclave.
V-B6 Enclave software cannot access unprotected memory.
V-B7 Enclave software cannot manipulate interrupt functionality.

MA V-C1 Untrusted DMA peripherals are not modeled.
V-C2 Interrupts from the watchdog timer are not modeled.

B. Validating the implementation

1) Variable instruction length following reti: In the
SancusV model, instructions always take the same number
of clock cycles to execute, independent of the previously
executed instruction.

a) Broken assumption: We found that, in the real-world
openMSP430 implementation, non-jump instructions execut-
ing after a reti instruction take an extra cycle to execute.
To make matters worse, this extra cycle is also added to the
interrupt handling logic if it follows a reti instruction.

b) Attack: This subtle microarchitectural effect can
clearly be abused to differentiate two otherwise contextually
equivalent enclaves: E1 = {add; nop; nop} and E2 =
{nop; nop; jmp}, where nop normally takes 1 cycle, and
add and jmp take 2 cycles. When interrupting both enclaves
after two clock cycles, the first nop in E1 gets an extra
cycle, while jmp in E2 does not. Hence, E1’s resume-to-end
execution time will be one cycle longer compared to E2.

Beyond this specific example, we experimentally showed
that any two instructions with different execution lengths can
be differentiated, even when E1 and E2 do not contain jmp
instructions. This attack scheme is demonstrated in Figure 7,
where we can detect whether the very first executed instruction
was a two-cycle add in E1 or a one-cycle nop in E2.

1 2 3 9 10 11 12 13 14 15 16 22 23 24

CLK

IRQ

ADD IRQ 8

...

IRQ 8 ISR RETI r0 IRQ 8

...

IRQ 8 ISRE1

NOP IRQ 8 ... IRQ 8 ISR RETI r0 NOP IRQ 8 ... IRQ 8 ISRE2

Fig. 7. Second interrupt handler is delayed.

The trick is to cleverly issue two consecutive interrupts.
The first interrupt arrives while the target enclave instruction
is executing (cycle 1). Next, SancusV’s hardware-level double
padding defense, described in Section II-A2, balances interrupt
latency to make sure the ISR executes at the same time (cycle

10) in both cases. Furthermore, to ensure constant resume-to-
end timings, the next reti will be padded with the number
of cycles the initial interrupt processing was delayed (1 cycle
in the case of E1, zero for E2). We now schedule the second
interrupt when we expect the longer reti to finish (cycle 14).
In the case of E1, the interrupt handling logic will immediately
follow reti and will gain the extra cycle. In the case of
E2, however, the next regular instruction will have already
started executing by the time the interrupt comes in, and the
following interrupt handling logic will have the correct number
of clock cycles (as it does not follow the reti directly).
Hence, the attacker-controlled ISR will execute at a different
time, i.e., cycle 23 vs. 24, depending on the initially interrupted
instruction. This means a complete bypass of the defense.

c) Mitigation: This issue highlights the risks of a sep-
arate implementation and pen-and-paper model. Patching it
requires a thorough analysis of the openMSP430 two-stage
pipeline to identify the precise cause of the added delay
and either eliminating it or making sure it applies to every
instruction and the interrupt handling logic itself.

2) Instructions with execution time T > 6: To correctly
calculate the required padding, SancusV needs to know the
maximum instruction execution length. This length is an
explicit parameter in the SancusV model, and is defined to
be T = 6 cycles, as this is the longest length listed in the
openMSP430 documentation [26].

a) Broken assumption: Our analysis revealed two cases
where Sancus-specific instructions exceed the assumed limit.
First, the real-world Sancus implementation extends the origi-
nal openMSP430 core to also allow writes to program memory.
We found that such writes induce an extra penalty cycle, such
that instructions of the form mov &ram, &rom will take 7
cycles. Second, SancusV does not model the cryptographic in-
structions added by Sancus. These are executed atomically, as
with any other openMSP430 instruction, but can take several
thousands of cycles, depending on the passed parameters [16].

b) Attack: The real-world implementation continuously
decrements a 3-bit padding counter (starting from the value
6) after the interrupt arrives and before the current instruction
finishes. We experimentally confirmed that when this counter
underflows, an incorrect length is calculated for the subsequent
interrupt handling logic. This breaks the padding scheme and
enables attackers to distinguish enclaves that use instructions
exceeding 6 cycles.

c) Mitigation: The implementation should be correctly
parameterized with the real maximum execution bound T .
This is relatively straightforward in the case of 7 cycles for
program memory writes, but less so for unmodeled crypto-
graphic instructions that can take thousands of cycles (with an
impractical upper bound in the order of 216 when hashing
the entire 16-bit address space). Options for cryptographic
operations may include adopting an abandon-restart interrupt
policy [18], or disallowing them altogether inside enclaves,
which would, however, break crucial attestation functionality.

Ideally, to avoid further implementation-model mismatches,
T should be determined from the Verilog code, e.g., using

static analysis to determine the highest possible number of
clock cycles an instruction might spend in execution.

3) Resuming an enclave with reti multiple times:
The SancusV model includes a separate shadow register file,
referred to as the “backup”, to securely save and restore
the interrupted enclave’s secret register values. The model
explicitly dictates that the CPU should only fill the backup
when an interrupt arrives in enclave mode, and, upon the next
reti instruction, check whether the backup is non-empty and,
if so, restore the original values from the backup, mark it as
empty, and return control to the interrupted enclave.

a) Broken assumption: Our audit of the real-world im-
plementation revealed a serious bug, where, after first correctly
restoring the shadow register contents, reti incorrectly does
not clear the hardware flag that indicates a non-empty backup.
This means that once an enclave is successfully interrupted,
any subsequent untrusted reti instruction will also incor-
rectly restore the register values from the backup, which
still contains the secret values from when the enclave was
interrupted. Since this includes the program counter – as well
as all other register values – the attacker is practically capable
of setting a checkpoint in the enclave via an interrupt and later
jumping back to it.

b) Attack: To demonstrate the attack, we use the fol-
lowing minimal enclave that increases a zero-initialized credit
counter by one, but stores a private is_modified flag
to prevent multiple increases. While this enclave should be
contextually equivalent with one that always returns 1 in
r5, we experimentally validated that interrupts break this
equivalence by allowing the value to increase over 1.

1 cmp #0x0, &is_modified ; if (is_modified == 0)
2 jnz 1f ; {
3 add #0x1, &user_credit ; user_credit += 1
4 mov #0x1, &is_modified ; is_modified = 1
5 1: mov &user_credit, r5 ; } return user_credit

Listing 2. Credit management enclave (all variables are initialized to zero).

Sancus [16] only allows enclaves to start executing from
their entry points (the first instruction in this case): jumps
to the middle of the code section are blocked in hardware.
However, if we first interrupt the enclave at the start of line 3,
right before the add instruction, but, importantly, after the
check on is_modified; we can subsequently use reti
from outside the enclave to jump back to that point and
increase our credit an arbitrary number of times.

c) Mitigation: The Verilog implementation should be
corrected to adhere to the pen-and-paper model by clearing
the hardware flag indicating a non-empty backup upon reti.

4) Restarting enclaves from the ISR: The SancusV model
imposes that interrupted enclaves can only be resumed via
reti, and cannot be reentered from the start.

a) Broken assumption: Our audit revealed that this be-
havior is not enforced in the real-world Verilog implementa-
tion. Reentering an interrupted enclave from the start, instead
of resuming it properly via reti, may allow an attacker to
manipulate enclave values in an unintended way.

b) Attack: Reconsider the credit management enclave of
Listing 2. This time, however, we interrupt at the start of
line 4, right after the add instruction. At this point, the enclave
has incremented the credit balance, but has not yet set the
private is_modified flag to block further updates. Instead
of executing reti, the attacker now simply reenters the
enclave again from the start. We experimentally validated that
the second start-to-end run of the enclave breaks contextual
equivalence by once again incrementing the credit before
finally setting is_modified and returning 2 (instead of the
expected value 1) in r5.

c) Mitigation: The Verilog implementation should be
corrected to adhere to the pen-and-paper model by disallowing
jumps to an interrupted enclave’s entry point before reti.

5) Multiple enclaves: The SancusV paper explicitly docu-
ments that only a single enclave is modeled.

a) Broken assumption: The real-world openMSP430-
based SancusV implementation can be parameterized with any
number of hardware-enforced enclaves. Our audit revealed that
the implementation uses the default number of 4 enclaves.

b) Attack: Consider the credit management enclave Ec

of Listing 2, which is again interrupted at the start of line 4. In
this attack, however, instead of directly resuming or reentering
Ec, the ISR jumps to another enclave, Ea. The purpose of
this attacker-controlled second enclave is to set the program
counter to the entry point of Ec, just before getting interrupted
itself (which is also scheduled by the attacker). Upon the
second interrupt, the single backup register file – originally
containing the Ec register values – is overwritten with the
attacker-controlled Ea values, including the modified program
counter pointing to the start of Ec. Hence, the original progress
in Ec is lost, and we experimentally validated that, when the
ISR finally calls reti, control will be incorrectly transferred
to the start of Ec.

c) Mitigation: The Verilog implementation should over-
ride the default number of supported enclaves to one. If
support for multiple enclaves is desired, the SancusV model
and proof should be extended to rule out any additional attacks,
such as – but not necessarily limited to – the one above.

6) Enclave accessing unprotected memory: The SancusV
paper highlights that an important condition is that enclaves
cannot access unprotected memory outside of the enclave.

a) Broken assumption: Our security audit revealed that
the real-world implementation still allows enclaves to read
from and write to unprotected shared memory locations.

b) Attack: This oversight can clearly be abused to
differentiate two otherwise contextually equivalent enclaves:
E1 = {mov #1, &addr; mov #0, &addr} and E2 =
{mov #2, &addr; mov #0, &addr}, where addr lies
outside the enclave. While without interrupts the value at
addr always ends up being zero, we experimentally validated
that E2 can be trivially distinguished by interrupting after the
first instruction and inspecting the value at addr.

c) Mitigation: This important model assumption should
be properly enforced in the Verilog implementation. The most
straightforward solution would be to check target memory

addresses in the openMSP430 memory backbone and only
allow unprotected accesses based on whether the enclave is
executing in the given cycle.

7) Manipulating interrupt behavior from the enclave: The
SancusV model specifies that interrupt-related functionality
cannot be influenced from within the enclave itself. Concretely,
enclaves cannot manipulate (i) the interrupt-enable bit (GIE)
in the status register, (ii) the interrupt vector table (IVT)
containing ISR addresses, and (iii) the timer peripheral itself.

a) Broken assumption: We experimentally validated that
enclaves are currently allowed all 3 of the above forbidden
behaviors in the real-world Verilog implementation.

b) Attack: (i) Consider E1 = {nop; dint} and
E2 = {dint; nop}, where interrupts are disabled from
the instruction following dint. While contextually equivalent
without interrupts, the enclaves can be trivially distinguished
by interrupting during the second instruction and observing
whether the ISR executes (E1) or not (E2).

(ii) Another way to break contextual equivalence is to
map part of the enclave’s data section over the fixed IVT
location. This allows to trivially distinguish two enclaves that
write different unprotected ISR addresses to their private data
memory: the attacker just needs to schedule an interrupt and
observe which ISR executes.

(iii) Finally, we found that contextual equivalence can also
be broken by mapping part of the enclave’s private data section
over the memory-mapped I/O (MMIO) registers of the timer
peripheral. This allows the enclave to directly trigger inter-
rupts. Clearly, attackers controlling the ISR can distinguish
enclaves that schedule two consecutive interrupts vs. only one.

c) Mitigation: While in enclave mode, updates to GIE
should be blocked in the Verilog code of the core. Furthermore,
the core can easily be extended to disallow the creation of
enclaves that map over the fixed IVT location.

However, disallowing enclave timer configuration is less
straightforward and highlights the consequences of simplifying
a model. SancusV only models a single abstract peripheral
that is configured through simplified IN/OUT instructions,
whereas the real-world implementation may include several
peripherals that can reside at different MMIO address ranges
(cf. Section V-C2). One option would be to disallow enclaves
to map over any part of the MMIO range, but this would break
the important use case of secure enclave drivers [16]

C. Exploiting missing attacker capabilities

1) DMA side-channel leakage: In line with the original
Sancus 2.0 architecture [16], the SancusV implementation is
based on an older version of the openMSP430 core without
DMA capabilities. The SancusV formalization, hence, does not
model attackers with DMA capabilities.

a) Unmodeled capability: Although DMA is currently
not part of the formal model nor the implementation of
SancusV, we still consider it an interesting attack vector against
this system, as both more recent versions of openMSP430 [26]
and the upstream version of Sancus [31] support DMA. More-
over, this attack demonstrates how an extension not directly

related to interrupts can still undermine security properties
related to them, showing valuable insight.

b) Attack: An enclave can easily be constructed to
demonstrate how a DMA attacker with access to cycle-
accurate memory traces can obtain information that is hidden
to a Nemesis attacker (cf. Section IV). However, to directly
break the security guarantees of SancusV, we need to show an
example where the introduction of interrupts provides addi-
tional leakage compared to the DMA side channel alone. List-
ing 3 provides an example enclave with conditional branches
that are carefully balanced to be DMA side channel resistant.

1 mov #0x42, r5
2 cmp r6, &password
3 jnz 1f
4 mov #0x42, r6 ; 2 cycles, 2 accesses
5 jmp 2f ; 2 cycles, 2 accesses
6 1: mov r5, r6 ; 1 cycle, 1 access
7 mov r5, r6 ; 1 cycle, 1 access
8 jmp 2f ; 2 cycles, 2 accesses
9 2: mov #0x0, r7

Listing 3. Memory-balanced branches.

Both branches have an execution time of 4 cycles, dur-
ing which the CPU continuously accesses program memory
(fetching the instructions and the constants). Hence, these
branches are indistinguishable both to start-to-end timing and
to DMA side-channel adversaries. Since the instructions in the
two branches have different individual execution lengths, the
SancusV padding defense is still needed to protect against a
Nemesis attacker. However, even with correctly implemented
interrupt handling and padding, the DMA attacker can distin-
guish between the two branches if they are interrupted. Fig-
ure 8 shows the program memory accesses when interrupting
the first cycle after the branch, i.e., at the start of line 4 or 6.

1 2 3 4 5 6 7 8 9 10 11 11 12

CLK

IRQ

PMEM1

MOV #N, r6 IRQ 8 ISR RETI r0E1

PMEM2

MOV IRQ 8 ISR RETI r0E2

Fig. 8. Program memory accesses for the two flows in Listing 3.

The PMEM signal is high when the memory bus is free,
these are the cycles when the attacker’s DMA requests would
be served. We can see that the additional padding cycles (5-8
and 4-8) added to the interrupt handling logic do not access
the memory. Using DMA requests, an attacker can count how
many cycles have no memory access, i.e., how many padding
cycles were added. The number of padding cycles is directly
correlated with the interrupted instruction’s execution length,
which can be reconstructed this way, completely bypassing the
Nemesis defense.

c) Mitigation: In case DMA support would be added to
the current SancusV implementation, a straightforward defense
may be to disable DMA completely during enclave execution.
However, care needs to be taken, since even unfinished DMA

TABLE II. List of falsified and exploitable assumptions found in VRASED.
IM = Implementation-model mismatch; MA = Missing attacker capability;
DE = Deductive error.

IM VI-B1 The dma_addr bus contains the full address being accessed.
VI-B2 All components use a consistent key size.

MA

VI-C1 Shared peripheral bus is not modeled.
VI-C2 Secure stack initialization in SW-Att is not modeled.
VI-C3 Timing attacks on SW-Att outside of HACL* are not modeled.
VI-C4 Interrupt latency timing attacks are not modeled.
VI-C5 DMA timing attacks are not modeled.

DE VI-D Missing assumptions about the core.

requests may leak information (cf. Section VI-C5). More
sophisticated defenses that preserve some of the performance
gains offered by DMA are out of scope for this paper.

2) Scheduling interrupts with the watchdog timer: The
openMSP430 architecture has multiple hardware components
that can generate interrupts. The model of SancusV, however,
only has the notion of a single, abstract peripheral timer device
that can issue interrupts in any attacker-chosen clock cycle.

a) Unmodeled capability: The implementation supports
two timer peripherals: TIMER_A and the watchdog timer
(WDT). The number of padding cycles is calculated based on
the irq_arrived signal. This signal is raised for external
interrupts coming from TIMER_A, but not for the integrated,
on-chip WDT, which has its dedicated wdt_irq signal.

b) Attack: Although configuration options are more lim-
ited, the WDT can still schedule cycle-accurate interrupts. We
experimentally validated that, for WDT interrupts, no padding
is added, thus completely and trivially breaking the defense.

It is important to note that the shadow register switching
does not depend on these signals, so register values from the
enclave cannot leak to the ISR, even during a WDT interrupt.

c) Mitigation: This issue highlights the attention to be
given to interface signals. The padding implementation is
activated based on a signal that is too specific. If the detection
happened based on a signal that is raised for any type of
incoming interrupt, this attack would not be possible.

VI. SECURITY ANALYSIS OF VRASED
A. Identifying falsifiable and hidden assumptions

As explained earlier, the VRASED [15] security argu-
ment relies on only 7 explicit assumptions (cf. Appendix B)
that reportedly encapsulate all assumptions placed on the
functionality of the core and the compiler. Favorably, these
assumptions are explicitly listed and not scattered throughout
the paper, which makes them easier to validate. However, our
analysis revealed several imprecisely formulated or missing
assumptions, as well as important unmodeled attacker interac-
tions. Table II lists falsified and exploitable assumptions and
unmodeled features, as well as a deductive error. We refer to
Appendix C for remaining assumptions that were not found
to be directly exploitable.

B. Validating the implementation

As a first important observation, it is interesting to note that,
while our analysis of SancusV revealed seven implementation-

model mismatches, we found fewer such exploitable errors
in VRASED. This shows the power of extracting the model
directly from HW-Mod’s Verilog implementation.

1) Incorrect DMA address translation: One of the signals
HW-Mod monitors from the core is the DMA address bus
(dma_addr). If the address on this bus falls within the key
region, a reset is triggered before the value can be read out.

a) Broken assumption: The internal dma_addr bus of
the 16-bit openMSP430 core measures only 15 bits. This is
because DMA accesses are always word-aligned, making the
last (zero) bit of the address redundant. However, our audit re-
vealed that, in the crucial connection of the verified HW-Mod to
the unverified openMSP430 core, the 15-bit dma_addr signal
was incorrectly zero-extended (instead of left-shifted) into a
16-bit signal as follows: {1’b0, dma_addr[15:1]}.

b) Attack: We experimentally validated that the incor-
rect, zero-extended address comparison in HW-Mod allows
untrusted DMA peripherals to trivially read out the entire
value of the secret key without triggering a reset. This means
a complete bypass of the main VRASED security goal (P1).

c) Mitigation: This issue reinforces the importance of in-
terface signals between verified and unverified components and
more generally highlights the limitations of automated model
generation of only a subset of the core. The implementation
should adhere to the model by adding the extension bit in the
correct place, i.e., {dma_addr[15:1], 1’b0}.

2) Inconsistent key sizes: VRASED specifies [15, Defini-
tion 2] a security parameter l, which equals the key size, as
well as the challenge and HMAC digest sizes. The VRASED
implementation, furthermore, uses HMAC-SHA256 with ex-
plicit challenge and digest sizes of 256 bits (l = 32 bytes).

a) Broken assumption: In contrast to the formal security
parameter definition above, the unverified secure key ROM
module of the modified core defines a 64-byte master key.
This entire 64-byte master key is used by SW-Att to derive a
32-byte challenge-dependent key, which is securely stored on
the exclusive stack and is subsequently used to calculate the
attestation HMAC.

Crucially, however, in the verified HW-Mod component, a
master key size of only KMEM_SIZE = 31 bytes is used for
access control to the secure key ROM, leaving the second half
of the master key completely unprotected. To make matters
worse, even the first half of the master key is not completely
protected, as HW-Mod’s bounds checking excludes the byte at
key[KMEM_SIZE], i.e., the 32nd byte.

b) Attack: We experimentally validated that the incorrect
access control in HW-Mod allows untrusted code outside SW-Att
to directly read out all 33 affected bytes at key[31:63].

c) Mitigation: A consistent master key size should be
used throughout the implementation and the verification code.

These findings further highlight the limitations of inter-
actions between verified and unverified components, and
maintaining consistent parameters between them. Importantly,
this crucial oversight was not detected because VRASED’s
verification is parameterized with the same erroneous 31-byte
key size as HW-Mod.

C. Exploiting missing attacker capabilities

1) Secure metadata corruption with a peripheral: Both
the APEX [20] and RATA [21] VRASED extensions3 store
important metadata in secure MMIO peripheral registers.

a) Unmodeled capability: The secure proof-of-execution
register in APEX is implemented as a read-only peripheral
device. On openMSP430, all peripherals are connected to the
core via shared buses, both for addressing and for transferring
output values. If multiple peripherals output data in the same
cycle, the values are combined with a bitwise or operation.

We experimentally validated that a compromised DMA
device connected via the shared peripheral buses can interfere
with the values read from other peripherals. This includes
APEX’s secure proof-of-execution flag, which resides at a
fixed address in the MMIO space. APEX returns a secure
flag value of ‘1’ when the attested program has successfully
completed, while ‘0’ is used to signal an error or tampering.

b) Attack: Whenever the secure APEX peripheral MMIO
register address is seen on the shared address bus, our proof-
of-concept compromised peripheral puts a ‘1’ on the shared
output bus. A ‘1’, when or-ed with the actual output value
of the APEX peripheral will always result in a value of ‘1’,
signaling successful execution to the core. This is the case even
if the attacker has previously tampered with the execution and
the value of the flag in the secure register is ‘0’.

c) Mitigation: This issue highlights the risks of storing
security-sensitive data outside the security perimeter, among
untrusted and unverified components. Since this issue is a
result of the original openMSP430 design, it is not straightfor-
ward to fix. A possible workaround is to avoid the untrusted
peripheral bus altogether and store crucial attestation metadata
on-chip, within the trust boundaries of the core itself.

2) Key leakage through stack pointer poisoning: The
HACL* [37] cryptographic library requires a stack to save
temporary state, including secrets. VRASED’s HW-Mod, there-
fore, enforces an exclusive stack XS for SW-Att.

a) Unmodeled capability: At the hardware level, only
HW-Mod is verified, VRASED reuses the existing HACL*
proofs [37] to claim full security for its trusted SW-Att software
component. However, SW-Att is also responsible for setting
up the execution environment expected by HACL* before
invoking the actual cryptographic primitives. Unfortunately,
this crucial trusted wrapper code remains entirely unverified.

Even worse, our security audit of the implementation re-
vealed that the secure stack pointer is set up by untrusted
code before invoking SW-Att. The trusted SW-Att entry code
does not validate that the stack points to XS as expected.

b) Attack: This vulnerability allows an attacker to freely
change the value of the stack pointer before entering SW-Att.
Since SW-Att can only write to XS and a shared memory
region MR to store the HMAC result, a logical choice is to
point the stack to MR, as it is also accessible by untrusted

3The source code of RATA was only released after we conducted our
research, so we did not analyze it beyond confirming that it uses the same
shared peripheral bus and is thus potentially vulnerable to a similar attack,
which is left as future work.

software. SW-Att will now fill MR with sensitive stack frames,
potentially including the secret key. Once the stack overflows
MR, an illegal write will happen and the CPU will reset.
However, the secure reset does not clear MR, which allows
the attacker to retrieve the leaked values after the reset.

We experimentally found that, with the predefined size of
MR and without changing any configuration parameters, the
CPU resets during zero-initialization of the local variable hold-
ing the key, i.e., before sensitive values are leaked. However,
by changing the optimization level of the compiler (e.g., as
confirmed with msp430-clang v4.0.1 at -O1), this redun-
dant zero-initialization may be skipped. Note that this specific
zero-initialization is entirely redundant, and, hence, can be
safely removed without affecting functional correctness (A7).
We experimentally validated that, when the zero initialization
is skipped, the first 22 key bytes are copied into MR before
reset, thereby breaking VRASED’s no-leakage property (P2).

c) Mitigation: This issue highlights the risks of com-
bining proofs (i.e., HW-Mod and HACL*) without a rigorous
holistic security argument. In this specific case, a more explicit
argument should be made about how VRASED intends to
fulfill the assumptions of the HACL* proof. The assump-
tion for stack-pointer initialization should be fulfilled when
entering SW-Att. This can be done either transparently at the
hardware level, within the verified HW-Mod logic; or inside the
SW-Att software component, using a trusted (and preferably
also verified) assembly entry stub that sanitizes the ABI
expected by the C compiler, similar to Intel SGX shielding
runtimes [52]. This stub should also properly cleanse caller-
save registers when exiting SW-Att (cf. Appendix C1).

3) Timing side channel in authentication: To protect
against denial-of-service attacks, VRASEDA [15] extends SW-
Att with verifier authentication. Specifically, VRASEDA only
executes the expensive attestation if a correct authentication
token, calculated from the challenge and the secret key, is
supplied with the request (cf. Appendix A1). Importantly, the
verifier authentication primitive provided by VRASEDA is also
tightly coupled with the security of the more recent RATA [21]
VRASED extension.

a) Unmodeled capability: VRASEDA is entirely imple-
mented in trusted C code that is included at the entry point
of SW-Att and invokes the required HACL* cryptographic
primitives as shown in Listing 4. However, similar to the
previous issue, the C code itself remains entirely unmodeled
and unverified. Any security argument or assumptions about
this wrapper code are missing. Hence, a single vulnerability
in the trusted wrapper C code may invalidate SW-Att’s claimed
guarantees built on HACL*’s functional correctness, memory
safety, and secret-independent timing behavior.

1 if (memcmp(CHALL_ADDR, CTR_ADDR, 32) > 0) {
2 hacl_hmac(mac, key, CHALL_ADDR));
3 if (!memcmp(VRF_AUTH, mac, 32)) {
4 attest();
5 memcpy(CTR_ADDR, CHALL_ADDR, 32);
6 }
7 }

Listing 4. Authentication code in VRASEDA (simplified).

b) Attack: Observe that line 3 is vulnerable to timing
attacks as it uses the standard memcmp function from libc
to determine whether the attacker-provided value VRF_AUTH
matches the expected mac authentication tag computed using
the secret key. This function terminates at the first mismatching
byte pair, thus allowing an attacker to guess the secret authen-
tication mac value byte-by-byte, reducing the effort from an
exponential problem (25632) to a linear one (256 · 32).

We experimentally validated (cf. Table III in Appendix D).
that an attacker measuring SW-Att’s start-to-end execution time
can deterministically extract the expected mac value with little
effort and without key knowledge, thereby entirely bypassing
the main VRASEDA security goal.

c) Mitigation: This specific timing vulnerability can be
patched by using a constant-time memcmp implementation. In
general, however, this shows that any code included in SW-Att
needs to be thoroughly checked to not leak the key or any
information about it, which is difficult to generalize.

More broadly, this issue once again highlights the impor-
tance of rigorous argumentation when reusing existing security
proofs (e.g., that of HACL*) combined with seemingly simple
wrapper code. This timing issue could have been prevented if
the wrapper were not developed in C, but instead written in
F* and properly integrated into the HACL* verification.

4) Nemesis side-channel leakage: Given that VRASEDA
is vulnerable to timing side channels, and given that the
Nemesis [32] interrupt latency attack on Sancus is the result
of the underlying openMSP430 architecture, a logical question
to ask is whether this side channel affects VRASED as well.
In VRASED, interrupts are not allowed during the execution
of SW-Att and should result in an immediate, secure CPU reset.

a) Unmodeled capability: HW-Mod contains the formally
verified Verilog logic that will reset the CPU in case of an in-
terrupt request during SW-Att execution. However, the way HW-
Mod is wired to the core allows a Nemesis-type side-channel
leakage. The signal monitored by HW-Mod is irq_detect,
which is only raised upon instruction retirement. In other
words, the reset will indeed always correctly happen, but it
will be delayed until the cycle when the interrupt handling
would normally start. This can also be seen in Figure 9, where
the interrupt arrives and the irq[8] signal changes in the 4th
cycle, but the irq_detect signal is only raised at the end
of the executing instruction, followed by the CPU reset.

1 2 3 4 5 6 7 8 9 10 11

clk

irq[8]

irq detect

vrased reset

PUSH r9 PUSH r8 RESETinstruction

Fig. 9. Interrupt is only detected at the last cycle of the push instruction.

b) Attack: Since a CPU reset also zeroes benign timer
peripherals, the reset delay cannot be directly measured from
software. However, we experimentally developed a proof-
of-concept compromised DMA peripheral that is capable of

detecting CPU resets and saving information across them. This
allows a Nemesis-style “reset-latency” attacker to reconstruct
execution lengths for every individual instruction in SW-Att.

The effects on VRASED are arguably less severe than on
SancusV, since the HACL* code does not contain any secret-
dependent branches. As such, the only currently practical use
of this instruction-granular leakage would be to break a naively
patched memcmp solution that may be proposed against the
start-to-end timing attack presented in Section VI-C3.

c) Mitigation: This issue again highlights the attention
to be given to interface signals. Similar to Section V-C2,
the attack is enabled by wiring the wrong interrupt signal:
connecting HW-Mod with a signal that is immediately raised
for all interrupt sources would have ensured that the reset is
not delayed until instruction retirement.

More generally, this attack, along with the previous and next
ones, illustrates the ramifications and pitfalls of not modeling
time measurement as an important attacker capability.

5) DMA side-channel leakage: Just as with Nemesis, the
DMA side channel from Section IV is also a result of the
underlying openMSP430 architecture. Similar to interrupts,
DMA requests during the execution of SW-Att are disallowed.

a) Unmodeled capability: HW-Mod contains the formally
verified Verilog logic that will trigger a secure CPU reset
whenever detecting any DMA activity during SW-Att execution.
While this reset indeed prohibits direct data leakage, we found
that it, as with interrupts, does not prevent timing leakage.

There are two signals connected to DMA peripherals that
are driven by the core. First, a bus contains the data one cycle
after read requests. This is the same cycle as when the reset is
triggered, which also clears the data bus; this behavior ensures
that no sensitive data can be read out during SW-Att execution.

The other signal to the peripheral driven by the core is the
dma_ready signal, which shows whether the request was
successfully completed. This is the signal the DMA attacker
will monitor instead of the data bus. If this signal is high, there
was no contention on the memory bus. This signal is raised in
the same cycle when the DMA request is issued, so it is not
masked by the reset, which only happens in the next cycle.

b) Attack: We experimentally validated that an attacker
with untrusted peripheral access can fully exploit the DMA
side channel on VRASED to learn cycle-accurate memory
bus utilization for every instruction in SW-Att. This may have
severe effects if the code of SW-Att changes, while remaining
undetected by the HW-Mod security proof.

c) Mitigation: Since VRASED already disallows DMA
during SW-Att execution (in contrast to upstream Sancus [31]
which allows untrusted DMA accesses as a performance
optimization during enclave execution), a relatively easy fix
would be to properly mask the dma_ready signal as well,
so no side-channel information leaks to the rogue peripheral.

D. Deductive errors

VRASED does not formalize the operational semantics
of the original openMSP430 core. Any core implementation
that satisfies five short assumptions A1-A5 (cf. Appendix B)

should, hence, be covered by the proof. The end-to-end RA
security argument depends on two premises: the soundness of
the remote attestation scheme and the claim that the attacker
cannot learn the key. In the following, we argue that these
premises do not follow from the stated assumptions (for a
dissection of the full argument, we refer to Appendix E).

The claim that the attacker cannot learn the key is centered
around a lemma stating that a reset is caused if the key is read
directly, or if SW-Att writes outside the HMAC result region
MR. This lemma is rigorously formulated in LTL, and a
machine-checked proof is provided that shows that this lemma
follows from the LTL security invariants that were previously
shown to be enforced by HW-Mod. Specifically, the LTL rules
used in this part of the proof were shown to be enforced
by the state machine that was directly generated from HW-
Mod’s Verilog implementation, and we did not find any issues
with this mechanized part of the proof. However, the premises
leading to this lemma and the further conclusions drawn from
it are formulated more informally in writing, and they can be
bypassed by modifying unverified parts of the core.

First, leading up to the lemma, it is informally argued
that the key may only leak through (i) registers, supposedly
covered by A6; (ii) timing, supposedly covered by HACL*’s
secret-independent timing; and (iii) memory, covered by the
lemma. However, consider an alternative core implementation
that, when reading the key during the HMAC calculation,
delays this load operation by exactly as many clock cycles
as is the value of the key being read. Such a core satisfies A1-
A5, which do not specify constraints about timing, but does
not conform to HACL*’s machine model that should support
constant-time code and, hence, trivially leaks the key.

Second, following the lemma, it is assumed that raising the
reset signal always prevents key leakage. However, consider
an alternative core that, upon reset caused by a DMA read, still
outputs the read value on the DMA data bus without masking;
or, alternatively, properly clears registers during a reset (A4),
but simply restores them, for instance, 100 cycles after the
reset, thus leaking the key without violating A1-A5.

We want to stress that the point is not whether such alterna-
tive cores are realistic or not (indeed, the actual openMSP430
implementation may very well be secure on these points).
What is important, however, is that none of these misbehaving
cores would cause the proof of VRASED to fail and the
end-to-end security claim does, hence, not follow from the
assumptions A1-A5, as claimed.

VII. DISCUSSION

Our case study suggests some concrete, actionable guide-
lines that can help in avoiding vulnerabilities and providing
better security assurance for systems. We structure them by
vulnerability category.

A. Implementation/model mismatches

A successful attack on the real system that can be repre-
sented in the formal model, but fails there, implies a certain
disconnect between the real system and the model. Since the

real system is not a mathematical object, it is fundamentally
not possible to find all these issues through more rigorous use
of formal deductive methods alone. However, for software-
based systems, many implementation artifacts of the real
system can be given a mathematical interpretation. Code in
a programming or a hardware description language becomes
a mathematical object by defining a semantics for these
languages. This, of course, introduces an assumption that the
real system will execute the code according to the defined
semantics. But in turn, verifying security properties of the
source code as used in the implementation of the real system
becomes a deductive problem that can – at least in principle
– be handled rigorously using mathematical methods.

Our case study provides substantial evidence for the fact
that implementation/model mismatches can be avoided by
maintaining a strong connection between the model and the
implementation code. For SancusV, where this connection is
weak, we found a considerable number of mismatches (V-B1
to V-B7). In contrast, the model for HW-Mod in VRASED was
automatically derived from the Verilog code, and indeed no
model/implementation mismatches were found within the HW-
Mod component. However, other parts of VRASED where the
connection was again weak, including the interface between
HW-Mod and the untrusted core, suffer from several issues.
Many of the implementation/model mismatches from our case
study are relatively simple errors that could have been avoided
or discovered with a more rigorous connection.

Guideline: Avoid implementation/model mismatches by
maintaining strong connections between code used in the
implementation, and the model used for verification.
While the systems in our case study only used automatic

derivation of a model to maintain this connection, we believe
other techniques can be very useful in reducing implementa-
tion/model mismatches. Some important ones include: deriv-
ing the implementation code from the model [53], systematic
testing of executable models against the real system [54], or
directly verifying the code itself [55].

Provable security results that do not provide evidence for the
connection between model and implementation, like SancusV,
can of course still be very useful. They show the absence of
mistakes or oversights in one specific aspect of the system (like
the design of the interrupt padding mechanism in SancusV).
But they only provide weak assurance about the security of
the real implementation.

B. Missing attacker capabilities

The existence of attacks on the real system that cannot be
represented in the formal model shows that the formal model
is incomplete in some sense. This is the most challenging
category of errors, and deductive methods can fundamentally
not find all these issues. Domain and attack expertise are
essential to assess whether a model captures all relevant
attacks, and it can never be ruled out that new kinds of realistic,
creative attack techniques are invented.

Our case study provides evidence for this by introducing
a fundamentally new attack technique that exploits the con-

tention between the CPU and a DMA device to break some
security properties of both systems considered in our study.
The literature provides other examples, such as the discovery
of Spectre attacks [56], which invalidated proofs of many
confidentiality properties based on execution models that did
not consider speculative execution.

In the absence of a systematic way of avoiding model
incompleteness, we have to rely on heuristic guidelines and
rules of thumb to assess the completeness of models.

Guideline: Useful sanity checks to avoid model incom-
pleteness include:
• the model should either represent attacks from the liter-

ature or explicitly argue why they are not represented;
• directly modeling specific attack scenarios should be

avoided, focus on modeling attacker capabilities and
ways of composing these capabilities into attack sce-
narios. This will typically allow the model to represent
a wider range of attack scenarios where the attacker can
also compose capabilities in unexpected ways;

• interfaces between verified and unverified components
should be audited for attacker-controlled inputs.

Our case study provides evidence for these rules of thumb:
three out of five model incompleteness issues that we found in
VRASED could have been avoided if the model had included
the realistic capability that the attacker can measure cycle-
accurate time. Additionally, at least three of the issues we
found in VRASED are directly related to untrusted interfaces.

It is, however, important to emphasize that modeling more
attacker capabilities can also impact the feasibility of the
verification: verification techniques do not necessarily scale
well as more attacker capabilities are modeled.

C. Deductive errors

If a successful attack on a real system can also be performed
on the model of the system, this implies that there is an error
in the formalization itself: the proof that no attacks exist in
the model must be flawed. One of the strengths of formal
methods is that they allow for very systematic checking for
these kinds of errors, and by moving to more rigorous proof
methods, ideally machine-checked proofs, these errors can be
avoided. In the case of VRASED (cf. Section VI-D), moving
to a stricter formal argument would have uncovered that the
end-to-end RA security property does not follow from the
assumptions. A possible solution may be to rigorously prove
that the core adheres to an operational semantics.

Other research also supports the claim that rigorous use of
formal methods is very useful in avoiding this class of errors.
For instance, an extensive effort to uncover compilation bugs
[57] in 11 compilers found no bugs in the machine-checked
formally verified CompCert [53] middle-end, but found bugs
in all other compilers and in the unverified parts of CompCert.

Guideline: Avoid deductive errors with rigorous reason-
ing, ideally using end-to-end machine-checked proofs.

VIII. RELATED WORK

The use of formal methods to increase assurance in the
security of computer systems goes back to the early days of
computer security with the US Military’s desire to build multi-
level secure operating systems [58]. The Multics operating
system is perhaps the most influential example of a system
whose security assurance combined formal methods [59] with
serious attack research [60]. Experience with the evaluation of
Multics and related systems ultimately led to the development
of the Common Criteria [61] as a standard for the evaluation
of the security of systems. The highest assurance level of
the Common Criteria requires a combination of deductive
evidence (a formally verified design) and inductive evidence
(thorough testing) – but very few products aim for that highest
assurance level. While the Common Criteria has had some
success in the evaluation and certification of very security-
sensitive commercial products, like smart cards or hardware
security modules, it also has widely recognized limitations
in terms of cost, bureaucracy, and lack of agility in the
certification process [62].

From the eighties onward, formal methods have been suc-
cessfully used in the fields of protocol design and cryp-
tography. Security properties of protocols were formalized
as early as the eighties [63], [64]. Currently, protocols are
often formalized during the design phase to detect mistakes
before deployment, for example in the NIST Post-Quantum
Cryptography Standardization Process [10] or for TLS 1.3 [9].

In parallel, researchers have also discovered that formal
approaches can still lead to mistakes. The Needham-Schroeder
protocol, formalized in 1989 [64], was shown to be broken
seven years later using an automated tool [65]. In the years
since, many attacks have been discovered against formally
proven protocol schemes [66], [67]. Koblitz and Menezes [67]
list multiple reasons why proofs can go wrong, some of which,
such as implicit and incorrect assumptions, also appeared in
our case study. Other papers, like the KRACK attacks [68]
show how protocol implementations deviating from the formal
descriptions can enable attacks, while pen-and-paper security
proofs have been described as “alarmingly fragile” [69].

In contemporary systems security research, formalization of
security properties is not yet as common, even if calls have
often been made to use more scientific reasoning and formal
methods for security guarantees [1]–[3], [70]. Notable recent
systems with public security proofs include Komodo [12] and
the seL4 microkernel [71]. Intel SGX also has (non-public)
proofs about the linearizability of its instructions [13] and
about some security properties [72].

IX. CONCLUSION

For systems of the size considered in this paper, we
believe the time is ripe to work towards complete open-
source hardware-software implementations whose security is
supported by a combination of (i) deductive evidence based
on models derived from, or strongly connected to the source
code, and (ii) inductive evidence based on attack research,
supporting the assumptions for the deductive reasoning.

ACKNOWLEDGMENT

We would like to thank the designers of the Sancus and
VRASED architectures for making their systems open-source.
We are grateful to Job Noorman, Thomas Van Strydonck,
and the anonymous reviewers for their insightful comments
on different versions of this paper. This research is partially
funded by the Research Fund KU Leuven, by the Flemish
Research Programme Cybersecurity, and by a gift from Intel
Corporation. Jo Van Bulck is supported by a grant of the
Research Foundation – Flanders (FWO).

REFERENCES

[1] D. I. Good, “The foundations of computer security: We need some,” in
Medieval Propaganda Pamphlet. University of Texas, 1986.

[2] B. D. Snow, “We need assurance!” in 21st Annual Computer Security
Applications Conference (ACSAC). IEEE Computer Society, 2005, pp.
3–10.

[3] C. Herley and P. C. van Oorschot, “Science of security: Combining
theory and measurement to reflect the observable,” IEEE Security &
Privacy, vol. 16, no. 1, pp. 12–22, 2018.

[4] ——, “Sok: Science, security and the elusive goal of security as a
scientific pursuit,” in 2017 IEEE Symposium on Security and Privacy
(S&P). IEEE Computer Society, 2017, pp. 99–120.

[5] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX Security
Symposium, Aug. 2019, pp. 249–266.

[6] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study
of privacy-violating information flows in javascript web applications,”
in 17th ACM Conference on Computer and Communications Security
(CCS). ACM, 2010, pp. 270–283.

[7] D. A. Basin and S. Capkun, “The research value of publishing attacks,”
Communications of the ACM, vol. 55, no. 11, pp. 22–24, 2012.

[8] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy (S&P).
IEEE Computer Society, 2013, pp. 48–62.

[9] K. G. Paterson and T. van der Merwe, “Reactive and proactive stan-
dardisation of TLS,” in Security Standardisation Research - Third
International Conference (SSR), ser. Lecture Notes in Computer Science,
vol. 10074. Springer, 2016, pp. 160–186.

[10] G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,
Y.-K. Liu, C. Miller, D. Moody, R. Peralta et al., “Status report on
the first round of the nist post-quantum cryptography standardization
process,” 2019.

[11] P. Subramanyan, R. Sinha, I. A. Lebedev, S. Devadas, and S. A. Seshia,
“A formal foundation for secure remote execution of enclaves,” in 24th
ACM Conference on Computer and Communications Security (CCS).
ACM, 2017, pp. 2435–2450.

[12] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Us-
ing verification to disentangle secure-enclave hardware from software,”
in 26th ACM Symposium on Operating Systems Principles (SOSP), 2017,
pp. 287–305.

[13] R. Leslie-Hurd, D. Caspi, and M. Fernandez, “Verifying linearizability
of Intel® software guard extensions,” in Computer Aided Verification -
27th International Conference (CAV), ser. Lecture Notes in Computer
Science, vol. 9207. Springer, 2015, pp. 144–160.

[14] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. T.
Mühlberg, and F. Piessens, “Provably secure isolation for interruptible
enclaved execution on small microprocessors,” in 33rd IEEE Computer
Security Foundations Symposium (CSF), Jun. 2020, pp. 262–276.

[15] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “VRASED: A verified hardware/software co-design for
remote attestation,” in 28th USENIX Security Symposium, 2019, pp.
1429–1446.

[16] J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling,
“Sancus 2.0: A low-cost security architecture for IoT devices,” ACM
Transactions on Privacy and Security (TOPS), vol. 20, no. 3, pp. 1–33,
2017.

[17] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “VulCAN: Efficient
component authentication and software isolation for automotive control
networks,” in 33rd Annual Computer Security Applications Conference
(ACSAC), Dec. 2017, pp. 225–237.

[18] F. Alder, J. Van Bulck, F. Piessens, and J. T. Mühlberg, “Aion: Enabling
open systems through strong availability guarantees for enclaves,” in
28th ACM Conference on Computer and Communications Security
(CCS), Nov. 2021, pp. 1357–1372.

[19] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik,
“PURE: using verified remote attestation to obtain proofs of update, reset
and erasure in low-end embedded systems,” in International Conference
on Computer-Aided Design (ICCAD). ACM, 2019, pp. 1–8.

[20] ——, “APEX: A verified architecture for proofs of execution on remote
devices under full software compromise,” in 29th USENIX Security
Symposium. USENIX Association, 2020, pp. 771–788.

[21] I. D. O. Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik, “On
the TOCTOU problem in remote attestation,” in 28th ACM Conference
on Computer and Communications Security (CCS), Nov. 2021, pp.
2921–2936.

[22] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-cfa: Minimalistic
control-flow attestation using verified proofs of execution,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2021, pp. 641–646.

[23] J. Certes and B. Morgan, “Remote attestation of bare-metal micropro-
cessor software: A formally verified security monitor,” in International
Conference on Database and Expert Systems Applications. Springer,
2021, pp. 42–51.

[24] J. Götzfried, T. Müller, R. de Clercq, P. Maene, F. Freiling, and
I. Verbauwhede, “Soteria: Offline software protection within low-cost
embedded devices,” in 31st Annual Computer Security Applications
Conference (ACSAC), 2015, pp. 241–250.

[25] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and
I. Verbauwhede, “Hardware-based trusted computing architectures for
isolation and attestation,” IEEE Transactions on Computers, vol. 67,
no. 3, pp. 361–374, 2018.

[26] O. Girard, openMSP430, 1.17 ed., https://github.com/olgirard/
openmsp430/blob/master/doc/openMSP430.pdf, Nov. 2017.

[27] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. T.
Mühlberg, and F. Piessens, “Securing interruptible enclaved execution on
small microprocessors,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 43, no. 3, pp. 12:1–12:77, 2021.

[28] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
a security architecture for tiny embedded devices,” in 9th European
Conference on Computer Systems (EuroSys). ACM, 2014, pp. 10:1–
10:14.

[29] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny trust anchor for tiny devices,” in 52nd ACM/IEEE
Design Automation Conference (DAC), 2015, pp. 1–6.

[30] R. de Clercq, F. Piessens, D. Schellekens, and I. Verbauwhede, “Secure
interrupts on low-end microcontrollers,” in 25th IEEE International Con-
ference on Application-Specific Systems, Architectures and Processors
(ASAP), 2014, pp. 147–152.

[31] “Sancus-core: Minimal openmsp430 hardware extensions for iso-
lation and attestation,” https://github.com/sancus-tee/sancus-core, ac-
cessed 2021-08-06.

[32] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying micro-
architectural timing leaks in rudimentary CPU interrupt logic,” in 25th
ACM Conference on Computer and Communications Security (CCS),
Oct. 2018, pp. 178–195.

[33] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Annual International Cryptology
Conference, 1996, pp. 104–113.

[34] T. Goodspeed, “Practical attacks against the msp430 bsl,” in Twenty-
Fifth Chaos Communications Congress. Berlin, Germany, 2008.

[35] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure
and minimal architecture for (establishing a dynamic) root of trust.”
in 19th Annual Network and Distributed System Security Symposium
(NDSS), 2012, pp. 1–15.

[36] X. Carpent, G. Tsudik, and N. Rattanavipanon, “ERASMUS: efficient
remote attestation via self-measurement for unattended settings,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2018, pp. 1191–1194.

[37] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“Hacl*: A verified modern cryptographic library,” in 24th ACM Confer-

https://github.com/olgirard/openmsp430/blob/master/doc/openMSP430.pdf
https://github.com/olgirard/openmsp430/blob/master/doc/openMSP430.pdf
https://github.com/sancus-tee/sancus-core

ence on Computer and Communications Security (CCS). ACM, 2017,
pp. 1789–1806.

[38] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhar-
gavan, C. Fournet et al., “Verified low-level programming embedded in
F,” ACM on Programming Languages, vol. 1, no. ICFP, pp. 1–29, 2017.

[39] S. Underwood, mspgcc: A port of the GNU tools to the Texas Instruments
MSP430 microcontrollers, http://mspgcc.sourceforge.net/manual/, 2003.

[40] M. Howard and S. Lipner, The security development lifecycle. Microsoft
Press Redmond, 2006, vol. 8.

[41] A. Boileau, “Hit by a bus: Physical access attacks with firewire,”
Presentation, Ruxcon, vol. 3, 2006.

[42] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neu-
mann, S. W. Moore, and R. N. M. Watson, “Thunderclap: Exploring
vulnerabilities in operating system IOMMU protection via DMA from
untrustworthy peripherals,” in 26th Annual Network and Distributed
System Security Symposium (NDSS). The Internet Society, 2019.

[43] G. Kupfer, “Iommu-resistant DMA attacks,” Master’s thesis, Computer
Science Department, Technion, 2018.

[44] B. Ruytenberg, “Breaking Thunderbolt Protocol Security: Vulnerability
Report,” Apr. 2020. [Online]. Available: https://thunderspy.io/assets/
reports/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf

[45] M. van Dijk, S. K. Haider, C. Jin, and P. H. Nguyen, “Advanced power
side channel, cache side channel attacks, DMA attacks,” Presentation,
Department of Electrical & Computer Engineering, University of Con-
necticut, 2017.

[46] D. R. E. Gnad, J. Krautter, and M. B. Tahoori, “Leaky noise: New side-
channel attack vectors in mixed-signal IoT devices,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2019, no. 3,
pp. 305–339, 2019.

[47] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[48] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-
bandwidth and reliable covert channel attacks inside the cloud,”
IEEE/ACM Transactions on Networking, vol. 23, no. 2, pp. 603–615,
2015.

[49] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-CPU attacks,” in 25th USENIX
Security Symposium, 2016, pp. 565–581.

[50] D. Ustiugov, P. Petrov, M. R. S. Katebzadeh, and B. Grot, “Bankrupt
covert channel: Turning network predictability into vulnerability,” in
14th USENIX Workshop on Offensive Technologies, WOOT, Aug. 2020.

[51] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel protection for a
shared memory controller,” in 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2014, pp.
225–236.

[52] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in 26th ACM Conference on Computer and
Communications Security (CCS), Nov. 2019, pp. 1741–1758.

[53] X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107–115, 2009.

[54] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of javascript,”
in ECOOP, 2010.

[55] P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and
F. Piessens, “Software verification with verifast: Industrial case studies,”
Sci. Comput. Program., vol. 82, pp. 77–97, 2014.

[56] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 40th IEEE Sym-
posium on Security and Privacy (S&P), 2019.

[57] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in PLDI, 2011.

[58] D. MacKenzie and G. Pottinger, “Mathematics, technology, and trust:
Formal verification, computer security, and the us military,” IEEE Annals
of the History of Computing, vol. 19, no. 3, pp. 41–59, 1997.

[59] D. E. Bell and L. J. La Padula, “Secure computer system: Unified
exposition and multics interpretation,” Mitre Corporation, Tech. Rep.,
1976.

[60] P. A. Karger and R. R. Schell, “Thirty years later: Lessons from
the multics security evaluation,” in 18th Annual Computer Security
Applications Conference (ACSAC). IEEE Computer Society, 2002, pp.
119–126.

[61] “Common criteria for information technology security evaluation,” https:
//www.commoncriteriaportal.org/, accessed 2021-08-18.

[62] R. J. Anderson, Security engineering - a guide to building dependable
distributed systems (3. ed.). Wiley, 2020.

[63] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
computer and system sciences, vol. 28, no. 2, pp. 270–299, 1984.

[64] M. Burrows, M. Abadi, and R. M. Needham, “A logic of authentication,”
Royal Society of London: Mathematical and Physical Sciences, vol. 426,
no. 1871, pp. 233–271, 1989.

[65] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR,” in International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 1996, pp.
147–166.

[66] J. P. Degabriele, K. Paterson, and G. Watson, “Provable security in the
real world,” IEEE Security & Privacy, vol. 9, no. 3, pp. 33–41, 2010.

[67] N. Koblitz and A. Menezes, “Critical perspectives on provable security:
Fifteen years of “another look” papers,” Advances in Mathematics of
Communications, vol. 13, no. 4, p. 517, 2019.

[68] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce
reuse in wpa2,” in 24th ACM Conference on Computer and Communi-
cations Security (CCS), 2017, pp. 1313–1328.

[69] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao,
and B. Parno, “Sok: Computer-aided cryptography,” in 42nd IEEE
Symposium on Security and Privacy, 2020.

[70] D. McMorrow, “Science of cyber-security,” MITRE Corporation JASON
Program Office, Tech. Rep. JSR-10-102, Nov. 2010.

[71] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4:
Formal verification of an os kernel,” in 22nd ACM SIGOPS Symposium
on Operating Systems Principles (SOSP), 2009, pp. 207–220.

[72] A. Goel, S. Krstic, R. Leslie, and M. R. Tuttle, “Smt-based system
verification with dvf.” in SMT@ IJCAR, 2012, pp. 32–43.

APPENDIX

A. Extensions to VRASED

Multiple derived architectures have been published that are
built on the open-source VRASED research prototype and use
its security arguments as the basis of their own.

1) VRASEDA [15]: Verifier authentication: To prevent an
attacker from generating many attestation requests to over-
whelm the prover’s computational resources, a modification to
SW-Att is proposed in the original VRASED paper [15]. This
variant, referred to as VRASEDA in our paper, authenticates
attestation requests before starting the expensive attestation.
Attestation requests need to contain an authentication token,
which is calculated by calling HMAC on the challenge with
the shared master key. Hence, in VRASEDA, guessing the
correct authentication value for a given request should be
computationally infeasible without key knowledge.

2) PURE [19]: Proofs of update, reset and erasure:
In addition to the malware detection provided by VRASED,
PURE also offers remote capabilities to erase the data section
of the device, update the program code, and reset the device
– steps that need to be taken if malware is detected, or simply
in case of a software update.

3) APEX [20]: Proofs of execution: APEX provides au-
thenticated sensor readings and actuation: proof that the device
executed the desired program (with a freshness guarantee) and
that the results of the execution have not been tampered with.
This is meant to solve the problem of malware infections
between the time of attestation and execution.

http://mspgcc.sourceforge.net/manual/
https://thunderspy.io/assets/reports/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://thunderspy.io/assets/reports/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://www.commoncriteriaportal.org/
https://www.commoncriteriaportal.org/

4) RATA [21]: TOCTOU avoidance: Built on VRASEDA,
this extension addresses the above time-of-check-time-of-use
(TOCTOU) problem more broadly. It not only allows exe-
cuting the software combined with an attestation, but it keeps
track of whether the software has been tampered with between
two attestations. It also allows for performance improvements,
since subsequent attestations do not require running HMAC
again as long as the software has not been altered.

5) Tiny-CFA [22]: Control-flow attestation: Tiny-CFA
enables the verifier to conduct control flow attestation on the
prover device. This is the only VRASED extension whose
additional security properties were not verified.

B. VRASED assumptions

VRASED [15] explicitly assumes the following to hold for
the implementation of the core:

A1 Program counter: The PC register contains the address
of the executing instruction.

A2 Memory address: Whenever memory is accessed, the
address bus contains its address, and the Wen/Ren signals
are active.

A3 DMA: Whenever DMA accesses the memory, the DMA
address bus contains the accessed memory address and
the DMAen signal is high.

A4 MCU reset: The reset handling cannot be modified, and
registers are zeroed during reset.

A5 Interrupts: Triggering an interrupt sets the corresponding
irq signal.

Furthermore, VRASED formulates two additional assump-
tions for the trusted compiler:

A6 Callee-Saves-Register: All registers used in a function
are cleared before exiting.

A7 Semantic preservation: Functional correctness is pre-
served during compilation from C to MSP430 assembly.

C. Additional (not directly exploitable) VRASED flaws

This appendix lists an additional falsified assumption and
an unmodeled feature that we did not find to be directly
exploitable within the attacker model.

1) Compiler not clearing dirty register values: Assump-
tion A6 unequivocally states that the compiler should clear all
registers that are used in a function. The paper also claims
that the msp430-gcc compiler used in the implementation
satisfies this assumption.

a) Broken assumption: We found, however, that regis-
ters r12-r15 are explicitly designated as “caller-save” in
the msp430-gcc application binary interface (ABI) [39,
§Register usage]. This means that their value may be clob-
bered, and the compiler is not required to restore or clear
them at the end of the function.

If the HMAC function uses any of these registers to tem-
porarily save key-dependent values, those may leak out and
be visible to untrusted code, since the register values are not
cleaned up manually by SW-Att either.

b) Attack: We experimentally confirmed that caller-save
registers are indeed clobbered after execution of SW-Att. How-
ever, in our experiments, no sensitive data was leaked with the
current implementation of the HMAC function and compiler
settings, but this is not guaranteed to always be true if the
compiler or the SW-Att implementation changes.

c) Mitigation: The most straightforward solution is to
insert a custom assembly stub at the trusted exit point of
SW-Att to clear all registers that can contain key-dependent
data. Such an ABI sanitization stub resembles existing security
solutions and best practices to prevent leakage through CPU
registers in Sancus [16] and, more generally, in Intel SGX
enclave shielding runtimes [52].

2) Reading the key with the debug unit: The openMSP430
architecture comes equipped with a debug unit connected to
the core through UART or I2C. This unit enables its user to
read or write data in memory, pause the execution of the CPU,
and read register contents.

a) Unmodeled capability: While the debug unit is not
mentioned at all in the paper, it is included in the open-source
implementation of VRASED.

b) Attack: Operating the debug unit requires physical
access, so strictly speaking, it lies outside the attacker model
of VRASED. However, since the debug unit lies outside
VRASED’s verification perimeter, it could also be extended
to be controlled from software without violating any of the
core assumptions in Appendix B (cf. the discussion in Sec-
tion VI-D). As a more concrete example, even when the debug
unit would adhere to the memory interface (A2) and interrupt
(A5) assumptions, it could still be configured to schedule
breakpoints or trivially read out CPU registers to leak the key.

c) Mitigation: This issue highlights the security risks of
development interfaces that fall outside the verification perime-
ter. The easiest fix is to remove the debug unit altogether
from the implementation, as it only causes possible sources
of information leakage.

D. Timing attack on VRASEDA

Conforming to the attack described in Section VI-C3, Ta-
ble III shows the number of cycles the entire execution of
SW-Att takes with different authentication tokens given for the
same key-challenge pair. For the given pair, the correct token
starts with the bytes {0x59, 0x76}, as can be seen from
the increasing execution times. Following this guessing for
one byte at a time, the entire VRASEDA authentication token
can be extracted in linear effort.

TABLE III. Execution time of VRASEDA for authentication guesses.

VRF_AUTH[32] Execution time (cycles)
{0x1} 210,641
{0x0} 210,641
{0x59} 210,654
{0x59, 0x75} 210,654
{0x59, 0x76} 210,667

E. Analysis of end-to-end RA security argument

Soundness of remote attestation: VRASED’s end-to-end
remote attestation security argument [15] first relies on a
separate argument that proves the soundness of the RA
scheme. The soundness argument crucially relies on the
proven functional correctness of the HACL* cryptographic
library [37]. However, no argumentation is given how the
unverified openMSP430 core satisfies the machine model
assumed by HACL*. Particularly, even the formally verified
HACL* library will clearly break when executed on a core
which, for instance, performs subtractions for add or reverses
the direction of jmp instructions. Observe that there is no
assumption whatsoever that forbids this by saying that the core
should be bug-free, free of hardware Trojans, or even adhere
to some (formalized) MSP430 ISA specification. Hence, the
soundness of the attestation and the proven guarantees of
HACL* are trivially broken by a malicious core that e.g.,
performs subtractions for addition instructions and vice versa.

Security of remote attestation: We first provide an overview
of how the end-to-end RA security property relies on two as-
sumptions, which are further decomposed into sub-arguments.
Enumeration items on the same level represent preconditions
(which all need to be satisfied) for their parent item. ‘7’ indi-
cates that the given step could be bypassed by a misbehaving
core that still satisfies A1-A5. Steps for which the proof uses
a model derived from Verilog are typeset in italics.

1) RA soundness 7
2) The attacker does not learn the key 7

a) The key can only be learned through the memory 7

i) The key can only be learned through registers,
memory, or SW-Att timing 7

ii) A6 forbids leakage through registers after exiting
SW-Att 7

iii) HACL* prevents all possible SW-Att timing leak-
ages 7

b) Lemma 2: reading the key directly, or data that SW-Att
wrote to unprotected regions will cause a reset 3

c) Resets do not leak the key 7
d) The shared MR region cannot contain the key 7

We already argued above how soundness (step 1) may
be broken. Section VI-D, furthermore, contains a high-level
description of how a misbehaving core could be constructed
that still satisfies A1-A5, but breaks the assumption that
HACL* prevents the key from leaking through SW-Att timing
(step 2(a)iii). That section similarly describes how such a core
could break the assumption that a reset never leaks the key
(step 2c).

Step 2(a)i can be falsified similarly to the previous timing
example, but in this case the timing of an unprotected instruc-
tion can change depending on the previously saved value of
the key to falsify the claim in a misbehaving core.

For step 2(a)ii, leakage through register values is claimed to
be eliminated by the assumption A6 and the secure reset prop-
erty (P3). These prevent register values to be leaked after both
successful and unsuccessful executions of SW-Att. Assumption
A6 is directly falsified in Appendix C1. Furthermore, even
when the A6 and P3 conditions are met, we can once again
construct a malicious core to leak the key by not following the
implicitly expected read and write semantics of registers. This
core saves the value of the key in a shadow register during the
HMAC calculation, and writes it to one of the real registers
after the cleanup at the end of SW-Att execution.

For step 2d, it is stated that writes by SW-Att to the HMAC
region do not have to be covered by the lemma, as this region
cannot contain the key. This is directly falsified by our stack
pointer overwrite attack (Section VI-C2). Moreover, a core
could conceivably be constructed that simply dumps the key
in the MR memory region after SW-Att execution.

	Introduction
	Background and selected architectures
	SancusV: Provably secure interruptible enclaves
	Interrupt latency attacks
	Interrupt latency padding defense
	Formalization outline

	VRASED: Verifiable remote attestation
	Remote attestation architecture
	Formalization outline

	Methodology and attack techniques
	System and attacker model
	Scope of our analysis
	Research methodology
	Identifying falsifiable assumptions about system behavior
	Validating the implementation
	Exploiting missing attacker capabilities
	Exposing deductive errors

	Attack classification

	A novel DMA contention side channel
	Security concerns with DMA
	Attack idea

	Security analysis of SancusV
	Identifying falsifiable assumptions
	Validating the implementation
	Variable instruction length following reti
	Instructions with execution time T > 6
	Resuming an enclave with reti multiple times
	Restarting enclaves from the ISR
	Multiple enclaves
	Enclave accessing unprotected memory
	Manipulating interrupt behavior from the enclave

	Exploiting missing attacker capabilities
	DMA side-channel leakage
	Scheduling interrupts with the watchdog timer

	Security analysis of VRASED
	Identifying falsifiable and hidden assumptions
	Validating the implementation
	Incorrect DMA address translation
	Inconsistent key sizes

	Exploiting missing attacker capabilities
	Secure metadata corruption with a peripheral
	Key leakage through stack pointer poisoning
	Timing side channel in authentication
	Nemesis side-channel leakage
	DMA side-channel leakage

	Deductive errors

	Discussion
	Implementation/model mismatches
	Missing attacker capabilities
	Deductive errors

	Related work
	Conclusion
	References
	Appendix
	Extensions to VRASED
	VRASEDA vrased: Verifier authentication
	PURE vrased-pure: Proofs of update, reset and erasure
	APEX apex: Proofs of execution
	RATA rata: TOCTOU avoidance
	Tiny-CFA tiny-cfa: Control-flow attestation

	VRASED assumptions
	Additional (not directly exploitable) VRASED flaws
	Compiler not clearing dirty register values
	Reading the key with the debug unit

	Timing attack on VRASEDA
	Analysis of end-to-end RA security argument

