
Pandora: Principled Symbolic Validation of Intel SGX Enclave Runtimes

Fritz Alder1, Lesly-Ann Daniel1, David Oswald2, Frank Piessens1, and Jo Van Bulck1

1DistriNet, KU Leuven, Belgium, 2University of Birmingham, UK

Abstract—The popularity of Intel SGX technology in recent
years has given rise to a wide range of shielding runtimes to
transparently safeguard secure enclave applications against a
hostile operating system. Adequate validation of the crucial and
numerous shielding runtimes is, however, a multi-faceted and
fast-changing challenge, as new attack techniques against SGX
enclaves are discovered regularly and commonly necessitate
extensive software patches throughout the SGX ecosystem.

This paper proposes Pandora, a practical, enclave-aware
symbolic execution tool designed to address this challenge.
In contrast to existing tools, Pandora’s truthful and runtime-
agnostic symbolic execution of the exact attested enclave binary
for the first time allows to validate the critical enclave shield-
ing runtime itself. Furthermore, Pandora provides principled
foundations to deal with the moving-target nature of enclave
software security by implementing accurate taint tracking of
attacker inputs, a precise symbolic enclave memory model, and
support for pluggable vulnerability detectors.

We extensively evaluate Pandora on 11 different SGX
shielding runtimes with 4 detection plugins for a diverse set
of vulnerability types. Our experiments show that Pandora
can autonomously discover 200 new and 69 known vulnerable
code locations. Notably, Pandora is the first tool that allows a
wide-scale ecosystem investigation of recent pointer-alignment
software mitigations in real-world SGX enclave runtimes.

1. Introduction

Recent years have seen the rise of trusted execution
environments (TEEs) that provide strong, hardware-rooted
protection of small software components, called enclaves,
against hostile, possibly attacker-controlled system soft-
ware. With the release of the Software Guard Extensions
(SGX) [1], [2], included in selected Intel processors from
2015 onwards, TEE protection is readily available in today’s
mainstream computing platforms, and even more recent
technology, like the Trust Domain Extensions (TDX) [3] for
upcoming Intel server processors, continues to rely critically
on SGX enclaves. Thus, the widespread availability of SGX
has boosted ongoing interest in enclave applications and
limitations from both industry and academia.

While SGX hardware enforces that enclave memory can-
not be accessed from the outside, enclave software remains
ultimately responsible to be bug-free and should properly
sanitize registers and pointer arguments in the shared ad-
dress space. This non-trivial requirement has given rise to

a sizable ecosystem of SGX shielding runtimes that sup-
port diverse enclave applications. Modern SGX development
paradigms nowadays include (i) custom C/C++ software de-
velopment kits (SDKs) [4], [5] that directly expose a secure
function call abstraction; (ii) numerous SGX-tailored library
operating systems (libOSs) [6]–[10] to support lift-and-shift
protection of existing legacy applications; and (iii) enclaved
memory-safe language runtimes [11]–[14].

The popularity of Intel SGX has, furthermore, triggered
a long and ongoing line of attacks exploring limitations of
this technology [15]. In this respect, a clear trend has been
that, while some of the earlier SGX attacks [16]–[20] could
still be mitigated fully transparently at the hardware level
by means of CPU microcode patches, progressively more
stringent demands have been placed on enclave software
behavior to mitigate evermore specific vulnerabilities [20]–
[27] when interacting with the untrusted environment. This
has increasingly made secure enclave software development,
and especially the sanitization responsibilities for the numer-
ous SGX shielding runtimes, a moving target (cf. Section 2).

While software mitigations for transient-execution and
side-channel attacks have been widely studied for Intel
SGX, and presently various compiler-based solutions [24],
[28]–[33] exist, the crucial aspect of validating the security
of the enclave interface has received much less attention.
Researchers have only recently started to explore more sys-
tematic analyses through fuzzing [34]–[36] or symbolic exe-
cution [37]–[39]. However, existing approaches fall short in
that they focus on validating enclave application logic only,
without considering vulnerabilities in the crucial shielding
runtime, or even being compatible with diverse runtimes
beyond Intel’s SGX SDK. Furthermore, existing approaches
focus mainly on detecting memory-safety issues, without
considering more subtle types of shielding responsibilities,
such as untrusted pointer alignments [25], [26] and CPU
register sanitizations [21], [22], [27]. These approaches,
hence, are not fitted for the diverse and fast-changing SGX
software ecosystem, where a subtle sanitization oversight in
a shielding runtime may be the equivalent of a zero-day
rootkit vulnerability in a commodity OS kernel.

To address these challenges, the main objective of our
work is the development of a principled, tool-supported
approach to validate the security of enclave software binaries
using symbolic execution. We propose Pandora, an exten-
sible, enclave-aware symbolic execution tool that is built
upon the popular angr framework and extends it with several
novel technical contributions. Particularly, we accurately

implement missing, SGX-specific x86 semantics, conceive a
proficient, enclave-aware symbolic memory model, and de-
velop a generic enclave memory extractor. Thus, Pandora for
the first time enables truthful and runtime-agnostic symbolic
exploration of full enclave binaries, identical to the attested
initial memory layout and including the crucial shielding
runtime itself. Furthermore, to deal with the moving-target
nature of secure enclave software development, we propose
pluggable vulnerability detectors, extending the notion of
angr breakpoints with SGX-specific memory-access and
control-flow events that allow rapid scripting of powerful
Pandora plugins.

Our extensive experimental evaluation on 11 different
shielding runtimes from research and industry, with 4 plu-
gins validating diverse sanitizations, highlights the delicacy
and complexity of present SGX software responsibilities.
We demonstrate the power of Pandora’s truthful symbolic
execution semantics by identifying several subtle vulnera-
bilities in commonly overlooked low-level enclave initializa-
tion and relocation code that cannot be analyzed with state-
of-the-art enclave symbolic-execution tools. We, further-
more, are the first to construct an automated tool for wide-
scale validation of intricate untrusted pointer-alignment soft-
ware mitigations [26], [40] recently deployed throughout the
SGX ecosystem in response to ÆPIC [25] attacks.

In the wider research landscape, we envision our open-
source tool as a solid foundation to enable future science on
validating the security of enclaved software, including low-
level and fast-changing SGX software shielding runtimes.

Contributions. In summary, our contributions are:
• We propose Pandora, an extensible, enclave-aware

symbolic execution framework for truthful and prin-
cipled validation of SGX binaries.

• Responding to the heterogeneity of the emerging SGX
software landscape, we propose a universal enclave
memory extractor and corresponding angr loader.

• Responding to the volatile and elusive SGX software
responsibilities, we propose pluggable detectors for
diverse vulnerabilities, from validating CPU register
cleansing over untrusted pointer sanitization and align-
ment constraints to control-flow transitions.

• In an extensive experimental evaluation on 11 different
SGX runtimes, Pandora autonomously confirmed 69
known and 200 new vulnerable code locations.

Disclosure and Artifacts. We responsibly disclosed all
findings to the respective vendors (tracked via 7 CVEs), pro-
viding them with comprehensive reports from our tool. We,
furthermore, included recommendations for software miti-
gations and assisted in validating the applied fixes, which
has uncovered remaining issues in at least one runtime.

In the spirit of open science, we provide a comprehen-
sive open-source artifact1 with self-contained HTML reports
of all vulnerabilities from Table 2, multiple runtimes to test
out Pandora, and documentation of how to reproduce our

1. Available at https://github.com/pandora-tee.

Enclave Boundary
Enclave Runtime

Entry
Exit

Application
Runtime
library

Init

EENTER

Figure 1. A shielding runtime transparently protects enclave applications
by 1 cleansing CPU registers upon entry or exit events; 2 finalizing
the initial memory layout, including any in-enclave relocations, upon first
entry; and 3 sanitizing pointer arguments before handing control over to
the application, which can call back via trusted standard library functions.

results. The artifact also includes the binaries of analyzed
shielding runtime versions (where allowed by licensing)
to provide a representative public data set of vulnerable
enclaves that can serve as a baseline for future research.

2. Background and Related Work

Enclave Shielding. Due to its strong attacker model, en-
clave software faces several additional security challenges
compared to traditional user-space software. In current prac-
tice, these additional challenges are primarily handled by a
shielding runtime that transparently intervenes on interac-
tions with the untrusted environment, as shown in Fig. 1.

Intel SGX enclaves are embedded as a contiguous vir-
tual address region within an untrusted, surrounding host
application. As in-enclave software is allowed to freely
dereference outside memory locations, the host application
can efficiently communicate through the enclave’s applica-
tion programming interface (API) by passing pointers to
arguments and return values in the shared virtual address
space. However, this also opens the door to an especially
powerful class of confused-deputy attacks, necessitating
that the enclave shielding runtime adequately sanitizes any
attacker-provided API pointers prior to dereference. Despite
this requirement being well-known and the availability of
automated methods—such as the edger8r tool to automat-
ically generate interface sanitization code from developer
annotations in the Intel SGX-SDK [4] and Open Enclave [5],
or the Rust type system leveraged in EDP [11]—a continu-
ous stream of vulnerabilities [21], [34], [37]–[39] has proven
SGX pointer sanitization vulnerabilities to be particularly
elusive and widespread in practice. As an example, Listing 1
illustrates how adequately sanitizing an elementary pointer-
to-pointer argument can be non-trivial in practice.

Moreover, in response to the recently disclosed
ÆPIC [25] and related memory-mapped I/O (MMIO) [26]
stale data vulnerabilities in Intel processors, enclave soft-
ware requirements for sanitizing untrusted pointer arguments
have been considerably complicated. That is, not only does
enclave software nowadays need to ensure that attacker-
provided pointers properly fall entirely outside the protected
enclave range, but any subsequent pointer dereferences also
need to proceed at a certain alignment and size or need to be
preceded and followed by fragile x86 instruction sequences

https://github.com/pandora-tee

void encl_get_from_addr(struct user_arg *op) {
assert(is_outside_enclave(op, sizeof(*op)));
// Copy op->addr to avoid TOCTOU attacks
volatile char* ptr = (char*) op->addr;
assert(is_outside_enclave(ptr, 1));
g_state = *ptr; }

Listing 1. Example of API sanitization: the highlighted lines enforce that
all attacker-controlled pointers lie outside the enclave prior to dereference.

to cleanse microarchitectural buffers and stall the CPU
pipeline. These successive refinements of software respon-
sibilities hence necessitated extensive and ongoing changes
throughout the heterogeneous SGX software ecosystem.

A parallel moving-target evolution can be observed at
the level of the application binary interface (ABI). An
initial comprehensive study [21] has shown that secure
initialization was widely overlooked for certain crucial CPU
configuration flags, such as the x86 direction flag that
may introduce memory-safety violations in otherwise secure
code. Similar issues have since been shown for stack-pointer
initialization in SGX enclave exception handlers [23] and
for x87 and SSE floating-point configuration registers [22].
The latter was most recently refined once again in an Intel
advisory [27] with additional SSE sanitizations to protect
against certain operand-dependent floating-point instruction
timing channels in otherwise constant-time code. A recent
overview study [41] has documented how these ABI vulner-
ability disclosures necessitated several rounds of widespread
patches throughout popular SGX shielding runtimes.

Symbolic Execution. Symbolic execution [42] statically
interprets a program using symbolic inputs (i.e., mathe-
matical terms) and collects constraints (i.e., mathematical
formulas over these terms) encoding programs paths. These
constraints can be solved with an SMT solver to generate
concrete inputs exercising the path or check security as-
sertions. Its ability to systematically explore program paths
and generate concrete inputs has made symbolic execution
a tool of choice for intensive testing [43] and vulnerability
analysis [44]. More recently, researchers have also started
to apply symbolic execution to the specific context of Intel
SGX enclaves [37]–[39]. We provide an extensive compari-
son of Pandora to these existing tools in Section 3.1. Some
works [20], [45] have, furthermore, focused on detecting
microarchitectural side-channel vulnerabilities in enclave
applications using symbolic execution, but their goal is or-
thogonal to our scope of validating shielding responsibilities.

Fuzzing. A well-known, complementary approach to static
analysis via symbolic execution is dynamic concrete ex-
ecution via fuzz testing. An orthogonal and concurrent
line of work [34], [35], [46], [47] has started to explore
such fuzzing for Intel SGX enclave applications. Compared
to symbolic execution, fuzzing can more easily scale to
complex code bases by quickly generating test cases and
may find bugs with fewer false positives. However, unlike
symbolic execution, fuzzing requires carefully crafted test
cases to investigate convoluted execution paths. Hence, in

line with existing surveys [48], [49], we regard fuzzing-
based approaches as complementary to symbolic validation.

3. Problem Statement and Overview

The combination of a varied and evolving Intel SGX
runtime ecosystem with the frequent discovery of new attack
techniques that necessitate additional software sanitizations
makes the problem of principled enclave software validation
particularly challenging and, indeed, largely unexplored for
the fundamental shielding runtimes themselves. Therefore,
we set the following goals:
G1 Truthful symbolic exploration. Enclave-aware symbolic

execution should closely mimic the real SGX hard-
ware. Particularly, to not miss vulnerabilities in the
runtime itself, the symbolic exploration should (a) start
from the very first entry instruction without skipping
initialization procedures or stubbing runtime library
functions; and (b) operate on the exact initial memory
contents, as remotely attested via MRENCLAVE [50],
while accurately detecting and symbolizing any subse-
quent accesses to untrusted or unmeasured memory.

G2 Runtime-agnostic. Validation should not be limited to
enclaves developed with any specific single shielding
runtime. The heterogeneous SGX ecosystem with ill-
documented and varying enclave binary formats calls
for a lightweight conversion approach to a unified
format capturing the exact enclave memory layout.

G3 Extensible validation policies. The system should sup-
port prompt reactions to evolving sanitization responsi-
bilities by adding new or modified vulnerability detec-
tion plugins. This calls for an approach that decouples
validation policies from enclave-aware symbolic exe-
cution mechanisms, such that plugins can solely focus
on elegantly expressing the required software security
invariants to be validated for explored paths.

In addition to these three research goals, we define the
following secondary design challenge:
D1 Accessibility. The tool should be open-source and easy

to use, including on closed-source binary targets. Re-
ports should be easily interpretable by human analysts.

3.1. Research Gap

Initially, SGX software vulnerability research was
mainly guided through manual code review [21]–[23], [41],
whereas automated enclave analysis through symbolic exe-
cution has only more recently started to be explored [37]–
[39]. Table 1 compares Pandora to these existing tools. In
summary, existing approaches are mostly focused on appli-
cation bug detection instead of principled validation of the
absence of shielding runtime vulnerabilities. This means that
they are inherently insufficient for truthful symbolic explo-
ration (G1), as the focus is on analyzing enclave application
logic only, while (largely) skipping the underlying shielding
runtime and operating on inaccurate initial memory con-
tents. Moreover, existing tools are ill-fitted for the diverse

TABLE 1. COMPARISON OF SYMBOLIC-EXECUTION TOOLS FOR SGX.

Runtime
Binary

Dump

Reen
try Plugins

Tool App SDK Entry Init Ptr ABI ÆPIC Jmp Open

TEEREX [37] Intel # # # G# G# # # G# #
Guardian [38] Intel # G# # # G# G# # G#
COIN [39] Intel # # # # # G# # # #
Pandora any

Features can be fully (), partially (G#), or not (#) supported. Columns 4–7 denote
whether the tool executes the runtime entry and initialization phases; can handle

binaries without additional specification; and uses the exact memory layout (dump).

SGX ecosystem (G2), as they all make runtime-specific
assumptions that strictly limit them to enclaves developed
with Intel’s SGX SDK only. Finally, existing tools focus
mainly on a narrow set of classical memory-safety issues
for pointers without principally supporting more intricate
shielding responsibilities (G3), such as recently rolled out
pointer-alignment ÆPIC mitigations [25], [26].

TEERex. TEEREX [37] is a closed-source prototype to
detect memory corruption vulnerabilities in enclave applica-
tions developed with the Intel SGX SDK. Similarly to our
work, TEEREX is based on angr [48], a popular symbolic
execution tool for binary code, and performs taint tracking of
untrusted attacker arguments and memory accesses outside
the enclave using unconstrained symbolic values.

In contrast to Pandora, however, TEEREX does not
support truthful symbolic exploration (vs. G1a), as it entirely
skips analysis of the whole trusted runtime and directly
performs symbolic execution of enclave application entry
points, called ecalls. Moreover, TEEREX is inherently
runtime-specific (vs. G2), as it relies on Intel SGX SDK-
specifics to identify addresses of ecall functions, to hook
specific pointer validation functions, and to set up an approx-
imate, non-truthful initial memory layout (vs. G1b). Con-
cerning vulnerability detection (G3), TEEREX only reports
unconstrained and NULL-pointer dereferences and cannot
detect more subtle pointer issues, or ABI and ÆPIC issues.
Particularly, by hooking the crucial validation functions
(e.g., is_outside_enclave in Listing 1), TEEREX may
miss logical partial validation errors [21] that will be caught
by Pandora’s precise enclave-aware memory model (cf. Sec-
tion 7). TEEREX is not openly available (vs. D1).

Guardian. Guardian [38] is similarly based on angr and can
partially check API and ABI shielding policies. Regarding
truthful exploration (G1a), Guardian is the only prior work
that starts at the enclave entry point within the trusted run-
time, but it nevertheless skips the complex enclave initial-
ization phase, which may still contain critical vulnerabilities
(cf. Section 7). Furthermore, similar to TEEREX, Guardian
is constrained to binaries developed with specific versions of
the Intel SGX SDK (vs. G2) and only constructs an approx-
imate, non-truthful initial memory layout (vs. G1b). As to
vulnerability detection (G3), Guardian validates a principled,
yet fundamentally incomplete orderliness policy, where the
developer is required to manually annotate execution phases
(vs. D1). Guardian validates that, after the entry phase, an

pointers

abi

intel_sdk

Plugins

SDK

linux_
selftest

UI + Reports

angr

scone

enclave_
dump

control
flow

aepic

Dynamic Phase

SGX-Tracer

+ Enclave
binary

Memory
dump Json layout

Enclave-Aware
Exploration

Enclave memory

SGX instructions

Enclave reentry

Exploration limiter

Pandora Engine

Figure 2. Overview of the Pandora architecture.

(incomplete) blocklist of ABI configuration registers has
been cleared, and that untrusted memory outside the enclave
is only accessible during execution of the shielding runtime,
but not during the application phase. This simplified permis-
sion state-machine model may be overly conservative for
applications and, more problematically, remains inherently
insufficient to detect critical vulnerabilities (e.g., CVE-2018-
3626 [21]) in the shielding runtime itself, as the latter is
allowed unrestricted access to the full address space.

COIN. COIN [39] uses concolic execution to find
memory-safety vulnerabilities in enclave applications.
COIN specifically targets applications developed on top
of the Intel SGX SDK (vs. G2) and requires the enclave
source code (vs. D1) for extracting the parameters of
ecalls in order to set up an approximate, non-truthful
initial state (vs. G1b). Regarding vulnerability detection
(G3), COIN is largely orthogonal to our work by focusing
on traditional memory-safety application vulnerabilities
instead of nuanced, enclave-specific shielding issues and
skipping analysis of the runtime itself (vs. G1a).

Finally, upon finalization of our paper, a concurrent study
called SymGX [51] was published, focusing on detecting
cross-boundary pointer vulnerabilities in the source code of
Intel SGX applications.

3.2. Solution Overview

Figure 2 depicts a high-level overview of the Pandora
software architecture, which we implemented in 5,934 lines
of extensible Python code (as measured by sloccount).
At Pandora’s core, the engine component 1 augments the

underlying symbolic execution library angr 2 [52] with ac-
curate SGX semantics and drives the enclave-aware truthful
symbolic exploration 3 (G1), described in Section 4. The
engine is primed with the exact initial enclave image via a
novel, runtime-agnostic dynamic memory extraction phase
4 (G2) detailed in Section 5. As such, Pandora is the first

symbolic-execution tool that can find vulnerabilities before
the application code, i.e., in the runtime entry procedures
and in the low-level enclave initialization phase.

While symbolically executing a binary, the Pandora en-
gine triggers vulnerability-detection plugins 5 (G3), de-
scribed in Section 6, that are based on subscribable events
exposed by the SGX-aware exploration. After a completed
run, Pandora formats the findings of each plugin into con-
venient and interactive HTML reports 6 (D1), shown in
Appendix A, including severity levels, descriptions, disas-
sembly, register dumps, and full basic-block backtraces to
enable human analysts to investigate the reported issues.

4. Enclave-Aware Symbolic Execution (G1)

4.1. Modeling x86 Instruction Semantics

The underlying VEX representation used by angr does
not have a symbolic model for many x86 instructions that
commonly occur in enclave binaries. Most prominently,
the ENCLU user leaf instructions [53] are used inside the
enclave to perform architectural tasks, such as creating
a local attestation report (EREPORT), generating crypto-
graphic keys (EGETKEY), or exiting the enclave (EEXIT).
While prior work faced similar angr limitations and either
did not execute [37] or merely hooked and skipped [38]
over these instructions, Pandora truthfully emulates used
enclave instructions as closely as possible. For example,
in EREPORT, we copy the relevant SGX enclave control
structure (SECS) fields provided by the enclave loader,
including the processor extended features request mask, into
the generated report structure. When specific fields are not
available and no sane defaults can be provided, values are
symbolized to ensure that all possible paths are explored.

Furthermore, in response to advanced ABI attacks [22],
[27], instructions like XSAVE and XRSTOR or their variants
are commonly used to save and restore extended x86 register
on enclave context switches. In contrast to prior work [37],
[38], Pandora carefully emulates their behavior as closely
as possible. Where necessary, we add dedicated shadow
registers to keep track of special x86 registers, such as
MXCSR, which are not normally part of angr’s execution
model. As shown in Section 7, this precise register view
enables Pandora plugins to accurately uncover subtle over-
sights, e.g., attacker-controlled registers when switching to
enclave functions or insecure MXCSR configuration values.

4.2. Taint Tracking of Attacker Inputs

In order to accurately deal with attacker-controlled in-
puts, Pandora comes with a capable symbolic taint-tracking

mechanism. Specifically, initial register contents on enclave
entry, as well as memory reads from outside the enclave or
from uninitialized unmeasured pages inside the enclave (cf.
Section 4.3), are transparently replaced with unconstrained
symbolic values. Thus, the symbolic execution initially
makes no assumptions about attacker-provided inputs, until
specific constraints are added by any subsequent sanitiza-
tions performed by the enclave code. Pandora, furthermore,
uses angr’s annotation system to mark attacker-controlled
symbolic values with an attacker-taint, which is conser-
vatively propagated during symbolic execution and can be
conveniently queried by plugins. For instance, plugins can
check that values are properly sanitized (e.g., Section 6.1) or
react differently based on whether a value is attacker-tainted
or not (e.g., Section 6.2).

Pandora’s taint tracking mechanism only tracks explicit
data flows. Any implicit flows that result from attacker-
controlled control flow are ignored (e.g., Pandora does not
propagate the taint from x to y in if(x == 1){ y = 1 }).
While tracking only explicit flows may, in principle, lead
to false negatives, it brings a large increase in practical-
ity [54] and is common in taint-tracking-based vulnerability
detection [55].

4.3. Enclave-Aware Memory Model

Pandora features a fully enclave-aware memory model
that truthfully simulates the enclave address space in a more
accurate and expressive way than prior work, while also in-
cluding reasonable performance optimizations. Particularly,
we are the first to realize a precise, runtime-agnostic enclave
memory model that properly recognizes attacker-controlled
symbolic addresses and sizes and that takes into account
novel attack surface from unmeasured SGX enclave pages.

4.3.1. Address-Space Partitioning. At its core, we im-
plemented our enclave-aware memory model as an angr
MemoryMixin extension that performs rigorous checks on
every memory access. Particularly, we use angr’s constraint
solver to unambiguously decide for every accessed buffer
with a possibly symbolic address and size whether it is re-
stricted to (i) lie fully inside the enclave; (ii) lie fully outside
the enclave; or (iii) partially touch the protected enclave
range. Accesses to memory inside or outside the enclave will
be handled differently, as outline below. Pandora plugins
can, furthermore, subscribe to these respective events to
check and report specific vulnerabilities (cf. Section 6).

Note that the above accurate classification is non-trivial
to implement, and prior work side-stepped these intricacies
by either hooking runtime-specific pointer-validation func-
tions [37] or ignoring the (possibly symbolic and attacker-
controlled) size of memory reads [38]. Our fully symbolic
memory model, on the other hand, allows to meticulously
detect subtle oversights or logical errors in the crucial valida-
tion functions themselves. For instance, Section 7 discusses
a particularly intricate finding where overflow protection
logic was silently optimized away by the compiler.

4.3.2. Untrusted Memory Accesses. For accesses falling
outside the protected enclave range, we model the strongest
type of adversary that utilizes tools such as SGX-Step [56]
to perform instruction-granular time-of-check to time-of-
use attacks. For example, an enclave checking an external
pointer that resides in untrusted memory, before accessing
this pointer again at a later time (as in Listing 1) may
realistically receive two different values. Pandora truthfully
simulates this by ignoring untrusted memory writes and
fully symbolizing all untrusted memory reads with a fresh
attacker-tainted symbolic value on every access.

4.3.3. Enclave Memory Accesses. In close accordance
with the SGX specification [53], we distinguish two types
of memory inside the enclave: measured and unmeasured
pages. Measured enclave pages are attested as part of
the MRENCLAVE enclave identity and are, hence, always
demonstrably initialized to the exact value provided by the
enclave loader. Unmeasured enclave pages, on the other
hand, are protected from enclave creation time onwards, but
their initial content is not attested as part of the MREN-
CLAVE enclave identity. These unmeasured enclave pages
have many uses in enclaves, for example to reserve heap
memory or to load additional code or data during execution
that did not exist at enclave creation time yet. As the initial
value of these pages is not part of the enclave identity, and
thus under attacker control, enclave software must always
securely overwrite these pages before first use. However,
to the best of our knowledge, to date no sanitizer exists to
validate this critical security property. To enable this with
Pandora, we ensure that any read from unmeasured enclave
memory initially returns an attacker-tainted symbolic value.
Only when unmeasured bytes are securely initialized, we
create an angr memory backing and the newly written secure
values will be taken into account for future reads.

Pandora, furthermore, implements two types of safe
performance optimizations. First, we remove measured and
initialized unmeasured enclave memory that consists of
all-zero bytes from the angr backend. Any reads from
such regions will statically return zero bytes until they are
overwritten with non-zero data. Second, only for source
and destination buffers that are constrained to fall entirely
inside the enclave, we optionally hook common memory-
management functions (memcpy and memset) and x86
rep string operations with custom SimProcedures that
eliminate loop overhead, while still taking care to trigger
any relevant angr mixins and breakpoints.

4.4. Enclave Entry and Reentry

During enclave lifetime, EEXIT and EENTER instruc-
tions can switch execution to and from the untrusted envi-
ronment. Prior work [37]–[39] relied on parsing runtime-
specific and fragile data structures to find out the supported
ecalls in order to skip the crucial runtime entry and/or
initialization phases entirely and immediately start executing
at the respective application ecall function.

4.4.1. Enclave Entry. To truthfully execute entry into the
enclave, we parse the actual thread control structure (TCS)
from enclave memory to retrieve the entry point location
and fill registers with the exact same values that they would
receive from the architecture, such as the TCS address and
FS and GS base addresses. All other registers are filled with
unconstrained, attacker-tainted symbolic values to initiate
Pandora’s taint-tracking mechanism (cf. Section 4.2).

4.4.2. Enclave Exit. Pandora allows to truthfully build up
enclave state by emulating a new EENTER with the same
accumulated memory view after a symbolic path reached
the EEXIT instruction. Hence, the enclave entry code in
the runtime itself will perform any necessary checks and au-
tonomously decide whether the entry request is an ecall or
an ocall return and dispatch this request accordingly. The
strength of this approach is that subtle attack vectors, like
dereferencing a function pointer before in-enclave relocation
(cf. Section 7) or returning from an ocall where no prior
ocall was executed [21], can in principle be detected.

4.5. Path Exploration and State Reduction

Pandora’s unique focus on truthful symbolic exploration
of the entire enclave binary, including low-level shielding
runtime code, comes with the potential cost of state explo-
sion. To reduce memory consumption for individual explo-
rations, Pandora optionally supports depth-first exploration
in addition to breadth-first exploration.

With regard to reentry, every path that reached EEXIT
would have to be reentered in a naive approach, because
the enclave may have accumulated relevant global state.
However, we observed that many paths result in a clean
failure that is reported to the untrusted world with the
request to restart the enclave with correct parameters. To
avoid redundantly exploring all these semantically equiva-
lent traces, we implement a novel state uniqueness reduction
before reentering enclave exploration. That is, two symbolic
EEXIT states are different from each other only if they have
made different changes to the internal memory of the en-
clave. For example, two enclave traces that both result in no
changes to the enclave except setting a specific bit indicating
that the enclave failed, are equivalent and reentering both
would be redundant. With this uniqueness criterion, we thus
remove all non-unique enclave traces before preparing them
for reentry, i.e., before Pandora executes on them again. Note
that this approach is a safe over-approximation, e.g., states
may still be semantically equivalent even though they differ
in some de-allocated stack variables. However, we found
that our state uniqueness reduction is sufficient to greatly
reduce the state space without risking that unique states
may be lost. The impact of this optimization ultimately
depends on the runtime, i.e., on the number of individual
paths that lead to enclave exits. Specifically, for the runtimes
investigated in this work, this state reduction has an efficacy
between 14% (EnclaveOS, 13 of 93 exit states pruned) and
60% (Occlum, 1694 of 2811 exit states pruned).

5. Runtime-Agnostic Enclave Loading (G2)

Truthful symbolic execution naturally starts with an
accurate representation of the initial enclave memory lay-
out (G1b). Unfortunately, however, in contrast to well-
established standards like the executable and linkable format
(ELF) for Linux binaries, there exists no standardized format
to distribute SGX binaries. Hence, over the last years, all
SGX shielding runtimes have adopted their own custom
formats to describe the additional information needed to
correctly load the enclave, e.g., often by encoding opaque
blobs into additional ELF metadata sections [4], [5]. This is
especially problematic as Intel SGX requires a particularly
involved, multi-stage loading process [1], [53].

First, the untrusted system software constructs the initial
enclave memory layout, containing regions for code and
data, and also including several unique enclave-specific
data structures. The two most prominent data structures are
the SECS structure describing, among others, the enclave
load address and size, as well as the TCSs, describing
the enclave entry point and thread-local data storage. Fur-
thermore, as SGX enclaves are commonly compiled as
position-independent code and loaded as dynamic libraries,
the MRENCLAVE identity must be independent of the load
address. Hence, the enclave cannot rely on the untrusted
loader to perform any remaining ELF relocations (e.g., for
dynamic function-pointer tables). Thus, as a second loading
step, enclave shielding runtimes generally include in-enclave
code to perform any necessary ELF relocations upon the first
enclave entry, i.e., after the enclave has already been created
and loaded into memory.

Static Analysis. Notably, all prior works [37]–[39] on SGX-
aware symbolic execution entirely side-step the aforemen-
tioned intricacies by restricting themselves to one particular
runtime, specifically the Intel SGX SDK, and by load-
ing the enclave largely as a normal ELF file. Particularly,
existing approaches only take care to create approximate
space for stack and heap and either skip to the application
directly [37], or they manually patch fragile and version-
specific global data structures to falsely mark the symbolic
enclave as initialized and skip over the costly, low-level
runtime initialization and relocation phases [38]. Thus, prior
works simulate an inaccurate enclave memory layout (vs.
G1b) and are, moreover, only compatible with one specific
version of one specific runtime (vs. G2).

We argue that, with ample code review or reverse-
engineering efforts, it is in principle possible to devise
an approach that accurately mimics the runtime-specific
loading process to construct a truthful initial memory layout,
satisfying G1b. Indeed, Appendix B describes such optional
support we added to Pandora to load enclave binaries from
selected runtimes based on static analysis of a given en-
clave binary. We found, however, that such a purely static-
analysis approach is highly labor-intensive and inherently
fragile, requiring to implement a custom loader for every
studied enclave runtime, possibly even with changes across
runtime versions. This would evidently limit the scope and

not satisfy our vision of runtime-agnostic analysis for the
sprawling SGX ecosystem that has become heterogeneous
both in runtime capabilities as well as in programming
languages available to the enclave developer.

Dynamic Enclave Memory Extraction. To overcome the
labor-intensity and inherent fragility of the above pure static
analysis approach with runtime-specific loaders, Pandora
supports a more powerful approach that requires a short-
lived dynamic execution phase to load the binary-under-test
once. Specifically, we developed a minimal standalone pro-
gram, called SGX-TRACER, to passively observe the loading
process of an enclave binary on actual Intel SGX hardware.2
SGX-TRACER consists of about 400 lines of C code and uses
the ptrace Linux system call to attach to the untrusted
enclave host process and intercept all calls to the (in-kernel
or out-of-tree) Intel SGX driver. SGX-TRACER can thus
fully transparently (i) detect enclave creation via ECREATE
and record crucial enclave SECS metadata, including load
address and size; (ii) record the exact memory contents of all
pages that are subsequently added via EADD; and (iii) track
additional metadata and permissions for these pages, as
well as locate special pages like TCSs, before the enclave
identity is finalized via EINIT. This allows SGX-TRACER
to accurately extract the exact initial enclave memory (G1b),
as attested by MRENCLAVE, for any SGX process (G2).

The output by SGX-TRACER is stored as a binary dump
and accompanying JSON file and can subsequently be
used on non-SGX hardware by Pandora. Particularly, we
developed a minimal angr loader to reconstruct a truth-
ful symbolic memory view, including permissions of each
page and whether the page is measured or unmeasured (cf.
Section 4.3). This inherently runtime-agnostic loader makes
Pandora compatible with any enclave dump extracted via
SGX-TRACER, regardless of runtime-specific loading details.

One downside of utilizing an enclave memory dump for
symbolic execution is that this process loses all debug sym-
bols, including function names. Pandora can run without any
of these symbols, but upon finding a potential vulnerability,
the generated reports may be less understandable for human
analysts (vs. D1). Hence, we implemented a custom symbol
handler that can augment a plain memory dump extracted
by SGX-TRACER with symbol information from the original
ELF file, if optionally provided via a Pandora command-line
option (together with a static offset).

6. Pluggable Vulnerability Detection (G3)

During symbolic exploration, angr triggers a set of
breakpoints that can be hooked to investigate the symbolic
state. Exemplary angr breakpoints are memory or register
accesses and function calls. Pandora extends the legacy angr
events with a set of eight new enclave-specific breakpoints
(cf. Appendix C). Specifically, Pandora exposes breakpoints
before and after enclave entry and exit, as well as break-
points before and after symbolic memory reads and writes

2. Real SGX hardware may not even be a strict requirement, as SGX-
TRACER could, in principle, also spoof the existence of the SGX driver.

that are restricted to resolve fully inside, fully outside, or
partially overlapping with the enclave memory range.

Pandora’s enclave-aware breakpoints form the basis for
our notion of pluggable vulnerability detection (G3). Specif-
ically, specialized plugins can subscribe to relevant enclave
events, as well as legacy angr breakpoints, to accurately vali-
date certain software invariants during symbolic exploration.
We created 4 plugins for a diverse set of enclave shielding
runtime responsibilities at the levels of ABI register cleans-
ing, API-level pointer arguments, ÆPIC-style pointer align-
ment considerations, and attacker-controlled control flows.
Plugins can, furthermore, make use of Pandora’s built-in
reporting interface (D1) to conveniently summarize any find-
ings in human-readable HTML reports that are automatically
annotated with all relevant information, e.g., a severity score
and description of the issue and how to reach the vulnerable
state (cf. Appendix A).

6.1. ABI-Level CPU Register Sanitization

Enclaves share the CPU register set with their untrusted
surrounding host process. An important responsibility of the
shielding runtime is, therefore, to securely initialize any low-
level configurations registers on enclave entry. Due to the
intricacies of these low-level register manipulations, those
sanitizations have to be carefully implemented in a fragile,
hand-written assembly stub before a jump into higher-level
languages can be securely made, compliant with ABI ex-
pectations [57], [58] by the compiler.

While the general concept of ABI-level sanitization is
relatively well-understood across SGX shielding runtimes,
an ongoing line of manually discovered vulnerabilities [21]–
[23], [27], [41] has underlined the intricacies and chal-
lenges for secure register initialization in the complex x86
instruction set. Prior work on automated enclave software
vulnerability detection has either fully ignored CPU register
sanitization by focusing on API validation only [34], [37],
[39], or resorted to a simplistic and incomplete blocklist
approach that merely checks whether selected CPU regis-
ters have certain concrete safe values [38]. On the other
hand, Pandora’s ABISan plugin proposes a more principled
approach based on taint tracking, which can autonomously
discover insufficient register initialization or cleansing.

6.1.1. Attacker-Tainted Configuration Registers. The
ABISan plugin hooks all angr register read events and relies
on Pandora’s taint-tracking mechanism (cf. Section 4.2) to
detect when unsanitized CPU configuration registers are
read. To avoid evident false positives, ABISan only requires
a concise allowlist for the x86 data registers, i.e., the 16
general-purpose registers, 16 vector registers, and floating-
point unit (FPU) register stack, which do not contain control
or status bits and, hence, are allowed to be tainted with
attacker inputs. Any other attacker-tainted register reads will
be automatically reported as critical policy violations.

Our systematic taint-tracking approach has two main
strengths compared to simply checking that an incomplete
subset of registers has been initialized to certain values [38].

First, ABISan can autonomously track all relevant occur-
rences where the attacker has influence over the result
of a computation through control registers.3 This may, in
principle, even include yet unknown ABI attack avenues.
For instance, we experimentally validated that ABISan
can fully autonomously discover attacker-tainted reads from
individual bits in the RFLAGS [21] register, e.g., the crucial
direction flag for x86 REP string instructions, as well as
a particularly subtle oversight for floating-point operations
that required several rounds of patches in Rust-EDP and
OpenEnclave to make sure that not only the x87 FPU control
word is initialized, but also the internal x87 tag word [22].
Second, ABISan also enables tracking advanced attack vec-
tors where the enclave would inadvertently restore tainted
control registers prior to using them in a computation.

6.1.2. Enclave Entry Sanitization. Our ABISan plugin
inspects the complete register state when reaching the first
CALL instruction inside the enclave. Indeed, the first func-
tion call inside the enclave revealed to be a surprisingly
effective heuristic for the switch from assembly sanitization
code to the higher-level, compiler-generated API entry point:
across the 11 investigated runtimes, only a single runtime
performed a CALL from inside assembly code before jump-
ing to C code, which we accommodated in our heuristic.
Upon reaching the API entry point, ABISan warns for every
control and data register that has not been entirely cleared
of attacker-tainted data.

Thanks to Pandora’s powerful taint-tracking mechanism
and enclave-aware execution model, we were able to express
the entire ABISan policy in only 142 lines of Python code.
It is important to note that the flexible nature of our plugins
allows for quickly reacting to the ever-changing landscape
of recommendations to ABI sanitization responsibilities for
Intel SGX. For example, initial research [22] first inves-
tigated issues with incomplete sanitization of floating-point
control registers and recommended setting the MXCSR regis-
ter to the ABI-specified value of 0x1F80 on enclave entry.
More recently, however, Intel [27] further nuanced secure
MXCSR initialization by recommending the value 0x1FBF,
which additionally sets all floating-point exception status
flags, to protect against subtle, one-cycle timing differences
dependent on (possibly secret) floating-point operand values.
We were able to swiftly incorporate this latest recommen-
dation into ABISan’s validation policy. This demonstrates
that our plugin system can react flexibly and promptly to
such updated recommendations, which, as we will show in
Section 7, require changes that propagate slowly throughout
the Intel SGX software ecosystem.

6.2. Untrusted Pointer Value Sanitization

We implemented a capable PTRSan plugin in 120 lines
of Python code that proposes three expressive security in-

3. The only limitation here is that we are restricted to the subset of x86
behavior that is emulated by angr. For instance, angr does not consider the
alignment-check flag in RFLAGS and largely ignores floating-point precision
configuration bits in the underlying VEX symbolic-execution engine.

variants to catch the pervasive issues of confused-deputy
attacks via untrusted pointer arguments in the shared ad-
dress space. Note that, in contrast to prior work [37]–
[39], PTRSan is entirely independent of the runtime-specific
sanitization function, solely relying on Pandora’s built-in
taint tracking and enclave-aware memory model. Hence, as
demonstrated in Section 7, PTRSan for the first time allows
to find subtle logical errors in the sanitization logic itself.

6.2.1. Address Inside or Outside Enclave. Any symbolic
memory access that crosses the enclave boundary, even
partially, violates the trusted-untrusted memory division.
This case arises when, according to the constraint solver,
a symbolic address and size pair can have concrete values
that fall both inside and outside the enclave’s protected
address range. PTRSan, hence, always reports such cases
as a critical issue of a pointer that has not been sufficiently
constrained by the enclave software.

6.2.2. Tainted In-Enclave Address. Attacker-tainted ac-
cesses that are constrained to resolve entirely in untrusted
memory are clearly benign behavior of the enclave. On the
other hand, attacker-tainted accesses that are constrained to
always lie entirely in trusted enclave memory may still be
benign behavior, e.g., an attacker-controlled, yet constrained
index into an in-enclave array data structure. Hence, we
only report a warning in these cases and mark them as
potential issues that may warrant manual and application-
specific further inspection. To simplify such further analysis,
PTRSan reports the size and maximum address range of the
tainted memory access. This criterion to warn for tainted in-
enclave memory accesses thus ensures that no clear violation
of secure memory accesses can occur, at the potential burden
of occasional false-positive warnings. These false positive
are non-straightforward to eliminate generically, but we
discuss possible enhancements and heuristics in Section 8.

6.2.3. Untainted Outside-Enclave Address. Untainted ac-
cesses that are constrained to always resolve entirely in
enclave memory are clearly benign behavior of the enclave.
However, if untrusted memory is ever accessed with an
address that is not tainted by the attacker, PTRSan sees
this as a critical issue hinting at unexpected behavior, e.g.,
an uninitialized or NULL pointer dereference.

6.3. Untrusted Pointer Alignment Sanitization

The recently disclosed ÆPIC [25] and MMIO stale data
leakage [26] attacks on Intel SGX platforms have shown
that enclave secrets may propagate from microarchitectural
fill buffers into architectural, software-visible registers when
dereferencing unaligned pointers to MMIO devices. While
CPU microcode updates have since been released to trans-
parently cleanse fill buffers upon enclave exits on affected
processors, additional software mitigations are still neces-
sary to prevent confused-deputy exploitation of these issues
during enclave execution [26], [40]. That is, even when
the enclave shielding runtime has properly checked that

untrusted, attacker-tainted pointer arguments fall entirely
outside the enclave memory range, as can be validated by
PTRSan, SGX enclaves have no way of knowing whether
these untrusted memory locations refer to vulnerable MMIO
regions. Indeed, privileged adversaries can trivially map un-
trusted memory pages to arbitrary MMIO devices, including
the x86 APIC configuration registers [56]. As such, deref-
erencing untrusted pointers during enclave execution may
unintentionally expose secret stale data, and Intel explicitly
advises that SGX shielding runtimes should additionally
constrain untrusted pointer dereferences to certain safe com-
binations of alignments and lengths [26], [40]. Note that this
holds both for outside-enclave reads and writes, through the
shared buffers data read (SBDR) and device register partial
write (DRPW) processor vulnerabilities, respectively.

In response to these dynamic challenges, we developed a
specialized ÆPICSan plugin, which investigates the align-
ment of each symbolic memory access that may resolve
outside the enclave. Specifically, in accordance with Intel’s
intricate software security guidance [26], [40], we validate
that every untrusted read or write access resolving outside
the enclave is minimally 8-byte aligned, i.e., has the lower
three address bits cleared. We, furthermore, ensure that
untrusted read accesses have a size that is always maximally
eight bytes at a time, whereas untrusted writes should be in
chunks of multiples of eight bytes at a time [26]. Finally,
when detecting unaligned untrusted writes, ÆPICSan parses
the disassembly of the current basic block to filter out safe
cases where the vulnerable write is preceded by the VERW
instruction to cleanse leaky microarchitectural buffers and
directly followed by an LFENCE; MFENCE instruction pair
to avoid inadvertent transient refills, as per Intel’s software
security guidance [26].

Our complete ÆPICSan validator requires only 103
lines of Python code, where the majority of code concerns
parsing the disassembly. This clearly shows the strength
of exposing Pandora’s enclave-aware memory model (cf.
Section 4.3) to individual plugins that may have partially
overlapping functionality, e.g., PTRSan vs. ÆPICSan.

The recent SBDR/DRPW disclosures required extensive
manual software mitigations, frequently encompassing sev-
eral rounds of commits and pull requests, throughout the
SGX runtime ecosystem. We are the first to provide any
form of toolchain support for automatically detecting and
validating SGX pointer-alignment considerations, and we
are the first to perform a wide-scale investigation of such
issues remaining in real-world enclaves (cf. Section 7).

6.4. Control-Flow Hijacking Validation

Lastly, Pandora includes a CFSan plugin, implemented
in 110 lines of Python code, that validates enclave control-
flow events. This plugin reports insecure jump targets ac-
cording to the location of the target and whether the target
is attacker-tainted.

First, similar to prior work [37], [38], we report a critical
security issue when the attacker can arbitrarily control a
jump target inside the enclave. Furthermore, similar to the

false-positive heuristic for CFSan, we only report a warning
when attacker-tainted jump targets are constrained to always
fall entirely inside the enclave.

In addition to this first criterion, partially covered by
prior work, CFSan also includes novel rules to detect
any enclave jumps to attacker-controlled memory contents.
Specifically, we found that several shielding runtimes fea-
ture unmeasured and executable memory pages, so as to
dynamically load (encrypted) code at runtime. As explained
in Section 4.3, this type of enclave memory is not part
of the attested MRENCLAVE measurement and is, as such,
initially attacker-controlled until it is first initialized by
enclave software. Thus, any enclave jumps to unmeasured
memory that has not yet been initialized are reported as a
critical security issue. While, apart from validation on our
own test enclaves, we have not encountered such instances
in our evaluation on real-world enclave binaries, we are the
first to formulate and write a sanitizer for this nuanced class
of novel unmeasured enclave vulnerabilities.

Finally, note that, in line with our goal of truthful sym-
bolic execution, the Pandora base engine already intercepts
any jumps to outside the enclave memory range or to non-
executable pages inside the enclave, regardless of CFSan.
We simply abort the symbolic execution paths for these
cases, as both of these events would result in a runtime
exception on real SGX hardware and would, hence, not be
an exploitable vulnerability besides denial-of-service.

7. Evaluation

We evaluated the efficacy of Pandora and its vulner-
ability detection plugins in two distinct ways. First, we
developed a concise unit-test validation framework, loosely
based on the existing Linux selftest enclave [59], to pre-
cisely diagnose (known) vulnerabilities in small benchmark
enclaves compiled with increasing levels of mitigations. Sec-
ond, we performed a comprehensive ecosystem analysis on
11 relevant, real-world SGX shielding runtimes, uncovering
over 200 newly found vulnerable code locations, tracked via
7 common vulnerabilities and exposure (CVE) identifiers.
Additionally, further demonstrating the versatility of Pan-
dora, we made our symbolic-execution tool autonomously
reproduce over 69 previously known vulnerable code loca-
tions from the literature in older versions of the investigated
runtimes.

Table 2 provides an overview of all reported and re-
produced issues, whereas a more detailed breakdown is
included in Table 4 in Appendix D. Notably, among all
the listed vulnerabilities, only one could potentially have
been uncovered with existing state-of-the-art SGX symbolic
execution tools (cf. Table 4) — due to either lack of support
for the required runtime, low-level initialization or entry
code, or the specific vulnerability type.

7.1. Selftest Validation Framework

The Linux kernel natively includes drivers for Intel SGX
since the 5.11 release [59]. As part of this effort, Linux

TABLE 2. EVIDENCE OF PANDORA FINDING AND REPRODUCING
VULNERABILITIES BOTH IN PRODUCTION AND RESEARCH RUNTIMES.

Runtime Version Prod Src Plugin Instances CVE

Newly found vulnerabilities in shielding runtimes (total 200 instances)
EnclaveOS 3.28 ✓ ✗† ABISan 1
EnclaveOS 3.28 ✓ ✗† PTRSan 15 CVE-2023-38022
EnclaveOS 3.28 ✓ ✗† ÆPICSan 33 CVE-2023-38021
EnclaveOS 3.28 ✓ ✗† CFSan 2
GoTEE b35f ✗ ✓ PTRSan 31
GoTEE b35f ✗ ✓ ÆPICSan 18
GoTEE b35f ✗ ✓ CFSan 1
Gramine 1.4 ✓ ✓ ABISan 1
Intel SDK 2.15.1 ✓ ✓ PTRSan 2 CVE-2022-26509
Intel SDK 2.19 ✓ ✓ ÆPICSan 22

Occlum 0.29.4 ✓ ✓ ÆPICSan 11
Linux selftest 5.18 ✗ ✓ ABISan 1

DCAP 1.16 ✓ ✓ ABISan 1
Inclavare 0.6.2 ✗ ✓ ABISan 1

Linux selftest 5.18 ✗ ✓ PTRSan 5
DCAP 1.16 ✓ ✓ PTRSan 17
Inclavare 0.6.2 ✗ ✓ PTRSan 2

Linux selftest 5.18 ✗ ✓ CFSan 1
Inclavare 0.6.2 ✗ ✓ CFSan 1

Open Enclave 0.19.0 ✓ ✓ ABISan 2 CVE-2023-37479
Rust EDP 1.71 ✓ ✓ ABISan 1
SCONE 5.7 / 5.8 ✓ ✗ ABISan 2 / 1 CVE-2022-46487
SCONE 5.7 / 5.8 ✓ ✗ PTRSan 10 / 3 CVE-2022-46486
SCONE 5.7 / 5.8 ✓ ✗ ÆPICSan 11 / 3 CVE-2023-38023
SCONE 5.8 ✓ ✗ CFSan 1

Reproduced vulnerabilities in older versions (total 69 instances)
GoTEE b35f ✗ ✓ ABISan 1
Gramine 1.2 ✓ ✓ ÆPICSan 10
Intel SDK 2.1.1 ✓ ✓ ABISan 1 CVE-2019-14565
Intel SDK 2.13.3 ✓ ✓ ÆPICSan 28
Open Enclave 0.4.1 ✓ ✓ ABISan 1 CVE-2019-1370
Open Enclave 0.4.1 ✓ ✓ PTRSan 13 CVE-2019-0876
Open Enclave 0.4.1 ✓ ✓ ÆPICSan 13
Rust EDP 1.63 ✓ ✓ ÆPICSan 2

Legend: † Source code was made privately available; Based on above runtime.

also contains a bare-metal selftest enclave that provides
a minimal example to test the loading and execution of
an enclave binary without relying on any particular SGX
shielding runtime. This Linux selftest enclave consists of
hand-crafted assembly routines for entry and exit, plus an
ecall dispatcher that calls C functions. While this selftest
enclave is not intended to be a production runtime, Linux
developers have noted that its code may be copied and
provides a “great starting point if you want to do things from
scratch” [60]. Indeed, we found that at least two real-world
SGX projects directly built on the Linux selftest enclave to
date: Alibaba Inclavare Containers [61] uses it as a skeleton
example of best-practice enclave runtime integration and
Intel’s Data Center Attestation Primitives (DCAP) [62] for
Windows more critically uses it as the base for a custom
launch enclave that gets access to an SGX platform-specific
cryptographic key to decide which application enclaves can
be ran on the system. We report Pandora’s findings on these
bare-metal enclaves in the next section.

We developed a unit-test framework based on the Linux
selftest enclave. This test suite contains individually crafted
enclave binaries featuring multiple levels of ABI register
cleansing and input pointer(-to-pointer) sanitizations. These
enclaves, thus, provide a controlled test environment to craft

arbitrarily complex and challenging scenarios to validate
the efficacy of our plugins and Pandora’s enclave-aware
symbolic memory model. Furthermore, they allow to pro-
totype conceivable vulnerabilities that have not (yet) been
encountered “in the wild”, e.g., jumps to unmeasured and
uninitialized pages (cf. Section 6.4).

7.2. SGX Runtime Ecosystem Analysis

Runtime Selection. To explore the vulnerability landscape
for real-world enclave software, we evaluated Pandora on
a diverse set of 8 production-quality and 3 research-grade
Intel SGX shielding runtimes. Note that, as discussed in
Section 3, we opted to focus on validating the vital enclave
shielding runtime itself, including indispensable, low-level
initialization and entry code, rather than the more acces-
sible challenge of validating higher-level application logic
as explored in complementary prior work [34], [37], [38].
While the latter typically only affects a single (research) ap-
plication that makes incorrect use of shielding abstractions,
e.g., unchecked user_check pointers [4], [5], production-
quality shielding runtimes are supposed to be thoroughly
vetted and any vulnerabilities found would affect universally
all applications developed on top.

Our runtime selection includes diverse enclave program-
ming paradigms, including 2 SDKs (Intel SGX SDK [4] and
Microsoft Open Enclave [5]), 4 libOSs (EnclaveOS [63],
SCONE [64], Occlum [10], and Gramine [65]), 2 secured
language runtimes (Rust-EDP [11] and Go-TEE [12]), and
3 bare-metal enclaves (Linux selftest [59], Inclavare [61],
and DCAP [62]). We included the bare-metal enclaves, as
well as the academic Go-TEE research prototype runtime,
to complement the insights from the more mature produc-
tion ecosystem. Furthermore, while the majority of SGX
shielding runtimes are developed as open-source software,
our selection also includes two proprietary runtimes: En-
claveOS, with source code privately provided by the vendor,
and SCONE, with only binaries available.

Due to the intricacies involved in building old runtime
versions with often complex dependencies, we opted to
limit our choice of known vulnerabilities to a representative
sample across major runtimes. We see a systematic overview
of the vulnerability landscape of past runtimes as an inter-
esting and feasible direction for future work and believe that
Pandora could aid in such a survey. In the following, after
describing our experimental setup, we highlight the most
interesting findings of each plugin.

Experimental Setup. We extracted exact enclave dumps
via SGX-TRACER and ran Pandora on all runtimes with a
time budget of 12 hours and a memory budget of 256 GB,
whichever occurred first. Cloud instances with such memory
budget are commercially available beginning at 4 $ per hour,
making this limit feasible for occasional extensive validation
with Pandora, e.g., as part of continuous integration (CI) for
releases (as at least one vendor privately expressed interest
in). Each runtime was explored twice: once with a default

breadth-first exploration strategy and once with a depth-first
strategy that eagerly followed the longest paths.

We note that in our experiments, the 256 GB memory
limit was only hit twice, namely for the Intel SGX SDK 2.19
when using breadth-first search after approximately 8 hours,
and for GoTEE as the enclave memory dump is exceedingly
large at 64 GB. In all other cases, the memory consump-
tion varied between 24.6 GB and 196.7 GB for breadth-first
search and from 4.9 GB to 154.7 GB for depth-first search.

In some rare cases, our Pandora prototype crashed before
reaching these limits due to remaining unsupported x86
instructions or due to crashes in the underlying angr and
z3 solver. For EnclaveOS specifically, we manually guided
Pandora to skip two functions that either contain still unsup-
ported AES-NI instructions, or execute a waiting loop that
expects a second thread to fill data before continuing. For the
DCAP bare-metal launch enclave, we similarly instrumented
Pandora to skip two functions with unsupported AES-NI
instructions.

7.2.1. ABI Sanitization Issues. Following a recent
overview study [41], Pandora promptly confirmed known
ABI issues in older Intel SGX SDK and Open Enclave
binaries, which have since been evidently mitigated (cf.
Table 2). Nonetheless, Pandora found that the proprietary
SCONE runtime still lacked any sanitization code for x87
and SSE floating-point configuration registers. We experi-
mentally demonstrated that this lack of ABI sanitization,
can be exploited in practice via a proof-of-concept exploit
that successfully introduces rounding errors in an elemen-
tary “sconified” floating-point application. Following our re-
sponsible disclosure, tracked under CVE-2022-46487, these
issues have been patched in the latest SCONE release 5.8.0.

Additionally, ABISan found that the academic GoTEE
runtime, as well as the Linux selftest, Inclavare, and DCAP
bare-metal enclaves, universally lack ABI entry sanitiza-
tions for RFLAGS and floating-point configuration registers.
Interestingly, Inclavare and DCAP took care to cleanse
extended processor state on enclave exit, but not on en-
try. Highlighting the strength of ABISan’s taint policy,
the plugin autonomously discovered attacker-tainted reads
from the x86 direction flag for compiler-emitted REP string
instructions that could be fatally corrupted in the DCAP
launch enclave, and notably found that GoTEE even lacks
secure stack pointer initialization, which could be exploited
to obtain full code execution in this runtime (cf. as also
reported by both CFSan and PTRSan). The issues in DCAP
are mitigated in version 1.19 and onward.

Our systematic analysis, furthermore, identified an inter-
esting case of regression in Open Enclave, which was as-
signed CVE-2023-37479 by Microsoft and mitigated in re-
lease 0.19.3. Particularly, in response to prior research [21],
commit efe7504 in Open Enclave included a patch to
properly sanitize the x86 alignment-check flag. However,
ABISan discovered that in current versions of Open En-
clave, the alignment-check flag was no longer properly san-
itized after the initial enclave sanitization routines have com-
pleted. Upon further investigation, we were able to conclude

that Open Enclave accidentally reintroduced the once-fixed
vulnerability with commit 16efbd6 in 2021, in a patch set
to mitigate another attack [23] that places more stringent de-
mands on stack-pointer initialization for exception handlers.
This instance of unintended regression thus provides a clear
illustration of the complexity of shielding responsibilities
and the potential value of including an automated tool like
Pandora in CI pipelines to test against known vulnerabilities
before releasing new software versions.

A final and particularly widespread line of ABI sanitiza-
tion issues follows from Intel’s recent MXCSR configuration-
dependent timing (MCDT) software guidance [27]. Par-
ticularly, Intel recommends that shielding runtimes set all
floating-point exception status flags in the MXCSR register
for the lifetime of the enclave to avoid subtle, operand-
dependent timing differences in otherwise constant-time
code on affected processors. Notably, this refined guidance
did not result from an academic publication or security
advisory and may have been easily missed by runtime
developers. Indeed, ABISan detected that only the Intel
SGX SDK and the dependent Occlum runtime properly set
MXCSR according to the new recommendation, and all other
runtimes did not. Following our disclosure, this has since
been patched in Open Enclave (0.19.3), Rust-EDP (1.71.0),
and EnclaveOS (3.30), and will be patched in the upcoming
SCONE 5.9.0 release.

7.2.2. Pointer Sanitization Issues. The strength of the
PTRSan plugin is to rigorously investigate issues with
pointer dereferences across many enclave runtimes.

In the SCONE production runtime, PTRSan uncovered
10 unique critical issues: 8 entirely unconstrained, attacker-
tainted pointer dereferences and 2 untainted outside-enclave
reads. Although the source code was not available, Pan-
dora was able to generate precise basic-block backtraces
annotated with ELF symbols, aiding in our investigation
and even the development of proof-of-concept exploits.
We reported each issue, tracked as a bundle under CVE-
2022-46486, to the SCONE developers who confirmed our
findings and included patches in the latest release 5.8.0.
However, PTRSan’s subsequent analysis on SCONE 5.8.0
revealed two more remaining vulnerabilities: an entirely un-
constrained attacker-tainted pointer and an untainted outside
enclave read, to be mitigated in the upcoming 5.9.0 release.

In EnclaveOS, PTRSan was able to detect a particularly
subtle instance of an untrusted pointer dereference as part
of a string length calculation, which is logically correct but
can be abused as a capable side-channel oracle to precisely
locate all null bytes in enclave memory [21]. Fortanix gave
a high severity rating for this finding, tracked under CVE-
2023-38022, and mitigated it in version 3.29. As a sec-
ond notable finding in EnclaveOS, Pandora autonomously
detected that overflow protections were missing in the un-
trusted pointer validation logic of the enclave binary. Upon
closer examination, we found that existing source-level over-
flow checks were silently optimized away by the compiler.
Specifically, the source code utilized void* pointer arith-
metic, which, unfortunately, is undefined behavior in C, lead-

ing to the compiler removing this check completely. Pandora
correctly reported that, with this check missing, the attacker
can cause untrusted pointers to wrap the address space via an
unsigned integer overflow. This issue highlights the strength
of Pandora’s binary-level validation and accurate symbolic
constraint solving of not only untrusted pointer values but
also their sizes, and is also mitigated in version 3.29.

Furthermore, as part of this research, PTRSan addi-
tionally confirmed an untrusted pointer dereference in the
protected code loader of the Intel SGX SDK version 2.15.1,
tracked via CVE-2022-26509 and patched in later versions.
This issue underlines the importance of validating low-level
runtime initialization code, as this pointer check was missing
before any in-enclave relocations, including global variables
containing the enclave base address and size needed in the
validation function itself, had been performed.

In the GoTEE research runtime, PTRSan discovered
numerous (31) unconstrained pointer dereferences, high-
lighting that even safe languages are not immune to over-
sights in pointer validation for SGX’s unique attacker model.
Furthermore, all bare-metal enclaves were found especially
vulnerable without any pointer sanitization measures (as
reported both by PTRSan and ÆPICSan). For the DCAP
launch enclave, Pandora reported 17 unique critical issues,
of which 11 were unconstrained, attacker-controlled reads
and 6 were unconstrained writes to arbitrary in-enclave
locations (mitigated in version 1.19). Likewise, the Inclavare
enclave contains several vulnerable invocations of memcpy
with unconstrained source and destination parameters, and
the Linux selftest enclave contains 5 entirely unconstrained,
attacker-tainted pointer dereference locations that can be
trivially exploited to leak or corrupt arbitrary in-enclave
memory locations.

Finally, for the known-vulnerable version 0.4.1 of Mi-
crosoft Open Enclave, Pandora correctly identified CVE-
2019-0876 [21], which highlights the power of multiple
reentries, as the vulnerability can only be triggered after
the enclave has been initialized. In addition, PTRSan also
reported a (presumably unknown) issue in this old runtime
version, indicating a lack of pointer sanitization in the
oe_initialize_cpuid() function.

7.2.3. ÆPIC Sanitization Issues. Pandora is the first tool
to support automated analysis and validation of ÆPIC-
style untrusted pointer alignment vulnerabilities in SGX
enclaves. We, thus, employed our novel ÆPICSan plu-
gin to perform a large-scale, automated analysis to assess
the completeness of Intel’s particularly complex and error-
prone software mitigation guidelines [26], [40] in real-
world enclave shielding runtimes. As result of this sys-
tematic analysis, Pandora found that SBDR and DRPW
mitigations were missing entirely in GoTEE (18 unique
instances), SCONE (11 instances; tracked via CVE-2022-
46487 and partially mitigated in version 5.8.0), and En-
claveOS (33 instances; tracked via CVE-2023-38021 and
mitigated in release 3.32). Furthermore, when analyzing
the latest SCONE 5.8.0 release, Pandora found that the
in-enclave memcpy function was not properly patched to

exclude SBDR issues which will be fixed in 5.9.0. Existing
mitigations in Gramine, Rust-EDP, and Open Enclave were
found sufficient, but ÆPICSan autonomously discovered a
missing SBDR sanitization in the enclave initialization phase
of the latest version of the Intel SGX SDK (also inherited by
the derived Occlum runtime), highlighting that adequately
restricting untrusted pointer alignments is challenging even
for mature runtime developers.

As expected, we additionally confirmed that ÆPICSan
can automatically reproduce ample SBDR and DRPW issues
in older versions of Gramine, Rust-EDP, Open Enclave, and
the Intel SGX SDK without mitigations.

7.2.4. Control Flow Issues. The CFSan plugin found a
delicate issue in EnclaveOS where the global offset table
(GOT) is incorrectly accessed before relocation of the en-
clave has completed. The GOT is used to jump to functions
in position-independent code and has to be securely initial-
ized, i.e., relocated, before it can be used inside enclaves.
The issue found by Pandora, and confirmed and fixed by
Fortanix in version 3.31, concerns an unusual trace where
an error occurs during initialization, which results in the
code calling a debug logging function. A similarly evasive
GOT relocation issue in an early-error path was reported by
CFSan for SCONE 5.8.0, to be patched in 5.9.0.

Furthermore, CFSan found that Inclavare’s bare-metal
enclave assembly entry stub incorrectly uses a signed JGE
x86 jump instruction, instead of a proper unsigned JAE con-
dition to sanitize the attacker-provided index into the ecall
function-pointer table. Critically, this subtle oversight ulti-
mately allows arbitrary control-flow hijacking by passing a
large negative index into the ecall table and loading the
function pointer from untrusted, attacker-controlled memory.
Likewise, CFSan found that, depending on the optimization
level, in-enclave relocation code for the ecall table was
missing in the dispatcher of the Linux selftest enclave.

Finally, due to the lack of secure stack switching in
GoTEE, CFSan reported unconstrained RET targets.

8. Discussion

We see Pandora as a mature prototype of an enclave-
aware symbolic execution tool that can serve as a basis for
future science. In particular, we designed Pandora with great
care for usability, through a well-documented command
line interface and detailed HTML reports, and reusability
through our plugin-based approach that makes it easy to
implement additional security analyses. Pandora has demon-
strated its usefulness by automatically finding vulnerabilities
in production runtimes. Hence, we believe that Pandora is a
valuable step forward in vulnerability detection for enclaves.

Coverage. We consider the main limitation of Pandora to
be incomplete coverage, i.e., the infeasibility to explore a
binary as a whole with symbolic execution. This is due to
the fact that Pandora, as any symbolic-execution tool, suffers
from the well-known limitation of state explosion, which can
make exhaustive exploration of larger binaries practically

infeasible. Hence, vulnerabilities can still remain undetected
in unexplored paths. We implemented novel, enclave-aware
performance optimizations, including uninitialized memory
and state-uniqueness reductions (cf. Section 4.5), and we
utilized both breadth-first and depth-first exploration in our
evaluation to cover more enclave behavior.

Our choice for angr [52] as the underlying symbolic-
execution engine may also in itself be a source of in-
complete coverage, as angr is not guaranteed to be sound
and may concretize values during symbolic execution. To
avoid missing program behavior, we adopted the most con-
servative approach whenever possible and tried to refrain
from unnecessary concretization of symbolic values. Despite
these limitations, angr is particularly powerful for rapid
development of vulnerability plugins in comparison to fully
fledged code verification tools.

A further possible technical, but not inherent, limitation
concerns Pandora’s coverage of any encrypted code that
would be loaded at runtime to execute a confidential enclave
application. Such code could be transparently supported by
providing Pandora with the decryption key, which could then
be used by the symbolic execution engine to automatically
decrypt and execute the code. That being said, the primary
focus of Pandora are runtimes, which are usually not utiliz-
ing such encrypted code loading themselves.

We consider the fact that Pandora was able to automati-
cally uncover vulnerabilities in production runtimes as clear
evidence for the practicality of our approach to validate
enclave shielding runtimes. The (orthogonal) extension of
Pandora’s truthful enclave-aware symbolic-exploration to
also analyze arbitrary (and potentially larger and deeper)
enclave application logic would require further scaling that
could conceivably benefit from optimizations proposed in
previous work [37], [39].

Accuracy. As any automatic vulnerability scanner, Pandora
may report false-positive issues, which could lead to overly
exhaustive outputs. We attempt to limit the strain on the
human analyst via two steps. First, potential issues are clas-
sified into multiple levels of criticality, and the reports are
formatted in modern HTML forms that allow to filter criti-
cality levels. Second, plugins may downgrade the severity of
issues via sensible heuristics, e.g., Section 6.2 explained how
PTRSan downgrades attacker-tainted pointers when they are
constrained to a region entirely inside the enclave, closely
resembling the benign pattern of an attacker-controlled index
in a trusted enclave buffer. All critical issues found by
Pandora listed in Table 2 were reported to the vendors who
acknowledged the vulnerabilities. Hence, we are not aware
of any false-positive results for these critical issues. Beyond
this, Pandora heuristically downgraded 124 of 452 (27 %)
vulnerabilities to warnings, where we are not aware of any
of those being exploitable.

Regarding false negatives, there is unfortunately no stan-
dardized ground truth of existing vulnerabilities for Intel
SGX runtimes, and a direct comparison of Pandora to re-
lated approaches is not feasible as their target (i.e., enclave
application logic) is orthogonal. Therefore, we followed a

best-effort approach and let Pandora successfully reproduce
known runtime vulnerabilities (cf. Table 2). Our analysis
clearly shows that Pandora reproduced all known vulner-
abilities from selected work [21], [22] and even found
an overlooked issue (cf. §7.2.2). We consider the main
limitation to be incomplete coverage, which may lead to
vulnerabilities on unexplored paths not being detected (e.g.,
CVE-2021-44421 in Occlum).

Future Work. Potential future extensions of Pandora con-
cern novel vulnerability-detection plugins, as well as the
investigation of transient execution access patterns in en-
claves [66]–[68]. Furthermore, we see Pandora as a useful
tool for a broad ecosystem analysis of the Intel SGX land-
scape and how fast vulnerability patches propagate across
runtimes. Ultimately, future work could even explore au-
tomated exploit generation and binary patching using Pan-
dora’s precise vulnerability reports.

There are additionally some performance improvements
that could allow Pandora to explore enclaves in more depth.
While we already implemented a depth-first extension to
Pandora that severely limits the memory use necessary
during exploration, angr still only uses one single CPU
core. Future work could thus investigate how angr symbolic
exploration can be split up onto multiple cores while re-
taining the same enclave-aware characteristics of Pandora
that are necessary to e.g., identify enclave boundaries. Ad-
ditionally, to mitigate path explosion, we could also adopt
state-merging [69] or path prioritization strategies [49], [70].

9. Conclusion

In recent years, a sizable ecosystem of Intel SGX enclave
shielding runtimes has emerged. However, writing secure
SGX software has proven to be particularly challenging due
to the moving nature of the threat landscape, and not even
well-designed and vetted shielding runtimes have been im-
mune to missing nuanced attack vectors or to reintroducing
already known vulnerabilities into their code. The research
community has only recently started to look into SGX-aware
symbolic execution, but has focused on application logic
only, while largely skipping the crucial enclave shielding
runtime itself. In this work, we presented Pandora, the
first enclave-aware and pluggable symbolic-execution tool
that allows truthfully validating arbitrary enclave binaries,
including low-level runtime initialization and entry phases.
With 4 diverse prototype plugins, we found 200 new and
69 known vulnerable code locations across a wide selection
of 11 SGX runtimes. Ultimately, we envision Pandora not
only as a practical validation tool for real-world enclave run-
times today, but also as a solid, extensible and open-source
foundation for future science on SGX software validation
of enclave shielding runtimes.

Acknowledgments. This research is partially funded by
grants of the Research Foundation – Flanders (FWO), un-
der grant numbers 11E5120N, 1261222N, 12B2A24N and

G081322N, and by the Flemish Research Programme Cyber-
security. This research was supported by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) under
grants EP/R012598/1, EP/V000454/1, and EP/S030867/1.
The results feed into DsbDtech. Some computations de-
scribed in this paper were performed using the University
of Birmingham’s BlueBEAR HPC service, which provides
a High Performance Computing service to the University’s
research community.

References

[1] V. Costan and S. Devadas, “Intel SGX explained.” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, 2016.

[2] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy. ACM, 2013.

[3] Intel, “Intel Trust Domain Extensions,” Feb. 2022. [Online].
Available: https://cdrdv2.intel.com/v1/dl/getContent/690419

[4] ——, “Intel Software Guard Extensions – Get Started with the SDK,”
2023. [Online]. Available: https://software.intel.com/en-us/sgx/sdk

[5] Microsoft, “Open Enclave SDK,” 2023. [Online]. Available:
https://openenclave.io/

[6] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications
from an untrusted cloud with haven,” in Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementa-
tion. USENIX Association, 2014.

[7] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell et al.,
“SCONE: Secure Linux containers with Intel SGX,” in 12th USENIX
Symposium on Operating Systems Design and Implementation.
USENIX Association, 2016.

[8] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical
library OS for unmodified applications on SGX,” in USENIX Annual
Technical Conference (ATC), 2017.

[9] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch, “SGX-LKL: securing the host OS interface for trusted
execution,” arXiv preprint arXiv:1908.11143, 2019.

[10] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and
S. Yan, “Occlum: Secure and efficient multitasking inside a single
enclave of intel sgx,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2020.

[11] Fortanix, “Fortanix enclave development platform – rust edp,” 2023.
[Online]. Available: https://edp.fortanix.com/

[12] A. Ghosn, J. R. Larus, and E. Bugnion, “Secured routines: Language-
based construction of trusted execution environments,” in USENIX
Annual Technical Conference (ATC), 2019.

[13] Enarx Project, “Enarx: Webassembly + confidential computing,”
https://enarx.dev/, 2023.

[14] Edgeless Systems, “Edgeless RT,” https://github.com/edgelesssys/
edgelessrt, 2022.

[15] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published
attacks on intel sgx,” arXiv preprint arXiv:2006.13598, 2020.

[16] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” in Proceedings of the 27th USENIX
Security Symposium, Aug. 2018.

https://cdrdv2.intel.com/v1/dl/getContent/690419
https://software.intel.com/en-us/sgx/sdk
https://openenclave.io/
https://edp.fortanix.com/
https://enarx.dev/
https://github.com/edgelesssys/edgelessrt
https://github.com/edgelesssys/edgelessrt

[17] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary
data sampling,” in Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS’19). ACM, Nov.
2019.

[18] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss,
and F. Piessens, “Plundervolt: Software-based fault injection attacks
against Intel SGX,” in Proceedings of the 41th IEEE Symposium on
Security and Privacy (S&P’20), May 2020.

[19] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data
load,” in S&P, May 2019.

[20] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“SgxPectre attacks: Stealing Intel secrets from SGX enclaves via
speculative execution,” in 4th IEEE European Symposium on Security
and Privacy (Euro S&P). IEEE, 2019.

[21] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in 26th ACM Conference on Computer
and Communications Security (CCS), Nov. 2019.

[22] F. Alder, J. Van Bulck, D. Oswald, and F. Piessens, “Faulty point
unit: ABI poisoning attacks on Intel SGX,” in 36th Annual Computer
Security Applications Conference (ACSAC), Dec. 2020.

[23] J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai, “Smashex:
Smashing sgx enclaves using exceptions,” in 28th ACM Conference
on Computer and Communications Security (CCS), 2021.

[24] Intel Corporation, “Deep dive: Load value injection,” 2020.

[25] P. Borrello, A. Kogler, M. Schwarzl, M. Lipp, D. Gruss, and
M. Schwarz, “ÆPIC Leak: Architecturally leaking uninitialized data
from the microarchitecture,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022.

[26] Intel, “Processor MMIO stale data vulnerabilities,” June 2022.
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/processor-mmio-stale-data-vulnerabilities.html

[27] ——, “Mxcsr configuration dependent timing,” Aug. 2022. [Online].
Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/best-practices/mxcsr-
configuration-dependent-timing.html

[28] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI: Hi-
jacking transient execution through microarchitectural load value in-
jection,” in 41st IEEE Symposium on Security and Privacy (S&P’20),
May 2020.

[29] A. Kogler, D. Gruss, and M. Schwarz, “Minefield: A software-only
protection for SGX enclaves against DVFS attacks,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022.

[30] L. Giner, A. Kogler, C. Canella, M. Schwarz, and D. Gruss, “Repur-
posing segmentation as a practical LVI-NULL mitigation in SGX,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022.

[31] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
controlled-channel attacks against enclave programs,” in Proceedings
of the 2017 Annual Network and Distributed System Security Sympo-
sium (NDSS), San Diego, CA, Feb. 2017.

[32] S. Hosseinzadeh, H. Liljestrand, V. Leppänen, and A. Paverd, “Miti-
gating branch-shadowing attacks on intel sgx using control flow ran-
domization,” in Proceedings of the 3rd Workshop on System Software
for Trusted Execution, 2018.

[33] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, and
A.-R. Sadeghi, “Dr. SGX: automated and adjustable side-channel pro-
tection for SGX using data location randomization,” in Proceedings
of the 35th Annual Computer Security Applications Conference, 2019.

[34] T. Cloosters, J. Willbold, T. Holz, and L. Davi, “SGXFuzz: Efficiently
synthesizing nested structures for SGX enclave fuzzing,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022.

[35] R. Cui, L. Zhao, and D. Lie, “Emilia: Catching iago in legacy code.”
in NDSS, 2021.

[36] M. Orenbach, B. Raveh, A. Berkenstadt, Y. Michalevsky, S. Itzhaky,
and M. Silberstein, “Securing access to untrusted services from TEEs
with GateKeeper,” arXiv preprint arXiv:2211.07185, 2022.

[37] T. Cloosters, M. Rodler, and L. Davi, “Teerex: Discovery and ex-
ploitation of memory corruption vulnerabilities in SGX enclaves,” in
Proceedings of the 29th USENIX Security Symposium, 2020.

[38] P. Antonino, W. A. Woloszyn, and A. Roscoe, “Guardian: Symbolic
validation of orderliness in sgx enclaves,” in Proceedings of the 2021
on Cloud Computing Security Workshop, 2021.

[39] M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “COIN Attacks: On
Insecurity of Enclave Untrusted Interfaces in SGX,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020.

[40] Intel, “Stale data read from legacy xAPIC,” Aug. 2022. [Online].
Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/advisory-guidance/
stale-data-read-from-xapic.html

[41] J. Van Bulck, F. Alder, and F. Piessens, “A case for unified ABI
shielding in Intel SGX runtimes,” in 5th Workshop on System Software
for Trusted Execution (SysTEX). ACM, Mar. 2022.

[42] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, 1976.

[43] P. Godefroid, M. Y. Levin, and D. A. Molnar, “SAGE: whitebox
fuzzing for security testing,” Commun. ACM, vol. 55, no. 3, 2012.

[44] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in IEEE Symposium on Security and
Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA.
IEEE Computer Society, 2012.

[45] T. Yavuz, F. Fowze, G. Hernandez, K. Y. Bai, K. R. Butler, and
D. J. Tian, “ENCIDER: Detecting Timing and Cache Side Channels
in SGX Enclaves and Cryptographic APIs,” IEEE Transactions on
Dependable and Secure Computing, 2022.

[46] G. Duan, Y. Fu, B. Zhang, P. Deng, J. Sun, H. Chen, and Z. Chen,
“Teefuzzer: A fuzzing framework for trusted execution environments
with heuristic seed mutation,” Future Generation Computer Systems,
2023.

[47] A. Khan, M. Zou, K. Kim, D. Xu, A. Bianchi, and D. J. Tian,
“Fuzzing sgx enclaves via host program mutations,” in 8th European
Symposium on Security and Privacy (EuroS&P). IEEE, 2023.

[48] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[49] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Comput. Surv.,
vol. 51, no. 3, 2018.

[50] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative tech-
nology for CPU based attestation and sealing,” in Proceedings of the
2nd international workshop on hardware and architectural support
for security and privacy, vol. 13, 2013.

[51] Y. Wang, Z. Zhang, N. He, Z. Zhong, S. Guo, Q. Bao, D. Li,
Y. Guo, and X. Chen, “Symgx: Detecting cross-boundary pointer
vulnerabilities of sgx applications via static symbolic execution,” in
30th ACM Conference on Computer and Communications Security
(CCS), 2023, p. 2710–2724.

[52] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary
analysis,” in Cybersecurity Development (SecDev). IEEE, 2017.

[53] Intel Corporation, Intel 64 and IA-32 architectures software devel-
oper’s manual, 2020, reference no. 325462-062US.

[54] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld, “Explicit
secrecy: A policy for taint tracking,” in 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P). IEEE, 2016.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/stale-data-read-from-xapic.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/stale-data-read-from-xapic.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/stale-data-read-from-xapic.html

[55] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks,” in 15th
USENIX Security Symposium, 2006.

[56] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical
attack framework for precise enclave execution control,” in 2nd
Workshop on System Software for Trusted Execution (SysTEX 2017).
ACM, Oct. 2017.

[57] H. Lu, D. L. Kreitzer, M. Girkar, and Z. Ansari, “System V appli-
cation binary interface,” Intel386 Architecture Processor Supplement,
Version 1.1, December 2015.

[58] A. Fog, “Calling conventions for different c++ compilers and operat-
ing systems,” http://www.agner.org/optimize/calling conventions.pdf,
Apr. 2018.

[59] L. Torvalds, “Linux operating system,” kernel.org, 2023.

[60] J. Sakkinen and N. McCallum, “selftests/x86: Add a selftest
for sgx,” Mar. 2020. [Online]. Available: https://lkml.kernel.org/lkml/
04362c0cf66bf66e8f7c25a531830b9f294d2d09.camel@linux.intel.com/

[61] AliBaba, “Inclavare containers: The future of cloud-
native confidential computing,” Jun. 2022. [Online]. Avail-
able: https://www.alibabacloud.com/blog/inclavare-containers-the-
future-of-cloud-native-confidential-computing 598992

[62] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Supporting
third party attestation for Intel SGX with Intel data center attestation
primitives,” White paper, 2018.

[63] Fortanix, “Fortanix runtime encryption platform and enclaveos,” https:
//www.fortanix.com/platform/runtime-encryption, 2023.

[64] Scontain GmbH, “Scone – a secure container environment,” 2023.
[Online]. Available: https://scontain.com/

[65] The Gramine Workgroup, “Gramine – a library os for unmodified
applications,” https://gramineproject.io/, 2023.

[66] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,”
in IEEE Symposium on Security and Privacy. IEEE, 2020.

[67] L. Daniel, S. Bardin, and T. Rezk, “Hunting the haunter - efficient
relational symbolic execution for spectre with haunted relse,” in
NDSS. The Internet Society, 2021.

[68] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen,
D. Stefan, T. Rezk, and G. Barthe, “Constant-time foundations for
the new spectre era,” in PLDI. ACM, 2020.

[69] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in PLDI. ACM, 2012.

[70] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to
less traveled paths,” SIGPLAN Not., vol. 48, no. 10, oct 2013.

Appendix A.
Pandora CLI and Report Generation (D1)

We designed Pandora with great care for usability (D1),
through a well-documented command line interface (CLI)
and detailed HTML reports. Figure 3 shows an example of a
human-readable, interactive HTML report from the PTRSan
plugin discovering unconstrained pointer dereferences in the
Linux selftest enclave (cf. Section 7.1). Figure 4 shows a
part of the interactive command line interface of Pandora,
which is intended to be highly usable for both rapid proto-
typing of new plugins and for long, unattended exploration
runs. Issues are reported on the command line during a run,
but are also logged in a JSON file that can later be expanded
into the fully-fledged HTML reports visible in Figure 3. If
the human analyst wishes, multiple breakpoints regarding

Figure 3. Example of an HTML report generated by Pandora.

the exploration and the plugins are readily available from
the command line, i.e., to interrupt execution on interesting
events and switch into a Python shell. This allows to quickly
implement and troubleshoot plugins. Lastly, several options
of Pandora are, in addition to the CLI, exposed via config-
uration files, allowing to define long-lasting analysis setups
that can be controlled by changing few program options.

We leave it for future work to rigorously investigate
to what extent Pandora achieved D1, e.g., by means of
a comprehensive and unbiased user study. Such a user
study should investigate whether the reporting generated by
Pandora is factually useful for a human analyst, and perform
a quantitative analysis on the benefit of additional CLI and
reporting features.

Appendix B.
Static Analysis of Enclave Runtimes

This appendix describes optional support we added to
Pandora to load enclave binaries from selected runtimes with
purely static analysis only, i.e., without first requiring the
SGX-TRACER dynamic memory extraction phase described

http://www.agner.org/optimize/calling_conventions.pdf
kernel.org
https://lkml.kernel.org/lkml/04362c0cf66bf66e8f7c25a531830b9f294d2d09.camel@linux.intel.com/
https://lkml.kernel.org/lkml/04362c0cf66bf66e8f7c25a531830b9f294d2d09.camel@linux.intel.com/
https://www.alibabacloud.com/blog/inclavare-containers-the-future-of-cloud-native-confidential-computing_598992
https://www.alibabacloud.com/blog/inclavare-containers-the-future-of-cloud-native-confidential-computing_598992
https://www.fortanix.com/platform/runtime-encryption
https://www.fortanix.com/platform/runtime-encryption
https://scontain.com/
https://gramineproject.io/

Figure 4. Part of the command line interface of Pandora depicting helpful
command options to the user.

in Section 5. The difficulty in adequately supporting arbi-
trary enclave runtimes in this way lies in parsing opaque
enclave memory layout metadata from the binary and load-
ing SGX-specific data structures into the symbolic execu-
tion memory after the ELF file has been loaded. Although
inherently fragile and version-specific, we show that it is
in principle possible to implement such support entirely
statically for three exemplary runtime loaders.

While we consider some of these static loaders to be
mature and satisfying our truthful initial memory layout cri-
terion (G1b), we note that this highly labor-intensive static-
analysis approach is evidently not runtime-agnostic (vs.
G2). Furthermore, even for the individual runtimes that are
supported, the static-analysis approach remains inherently
fragile, as new versions of these runtimes may completely
break or change the way runtime-specific data structures
are utilized in the enclave.4 Thus, we use our novel SGX-

4. Examples of such changes in the past were versions 2.4, 2.14, and 2.17
of the Intel SGX SDK when the internal _global_data_t C structure
was modified which resulted in altered offsets for the address of the enclave
base address, a crucial piece of information to properly resolve addresses
inside the enclave.

TRACER enclave memory extractor approach as the default
runtime-agnostic and truthful loader in Pandora, as also used
in the evaluation of Section 7.

Linux Selftest Enclave. First, the Linux selftest en-
clave [59] is a minimal, self-contained enclave that has a
fixed memory layout, with the TCS always being stored
at the start of the enclave range. This makes it an ideal
baseline runtime as no enclave initialization is necessary
and all relevant addresses are statically known at compile
time. The Linux selftest enclave serves as the foundation
for Pandora’s unit-test validation framework, discussed in
Section 7.1.

Intel SGX SDK. Second, the Intel SGX SDK [4] encodes
all information for the loading process in an additional
ELF metadata section. Based on manual analysis of the
open-source code of the Intel SGX SDK enclave loader,
we added full support in Pandora to decode this opaque
blob and extract the expected locations of TCSs, stack and
heap regions, and patches to initialize enclave global data
structures. We implemented mature support to perform these
steps in Intel SGX SDK version 2.18.1 and also validated
backwards compatibility and added support for version-
specific fields in versions 2.18 and 2.17.1.

SCONE. Lastly, we show that, in principle, the static en-
clave loading approach is even feasible without access to
source code by implementing an elementary (incomplete)
static loader for the proprietary SCONE [7] runtime. Specifi-
cally, we manually reverse engineered the enclave layout and
location of TCS data structures and thread-local memory
using a debugger. Based on this partial layout, our static
loader inserts the required data structures into the symbolic
memory layout when loading the SCONE runtime binary
ELF file.

Appendix C.
Pandora Breakpoints

Table 3 lists all enclave-aware breakpoints added by
Pandora. To accommodate various investigation scenarios,
all breakpoints can be triggered before and after the event
happened, i.e., to investigate an event both before or after it
had an impact on a Pandora state. For example, Pandora
memory read breakpoint, similarly to angr memory read
breakpoints, can be triggered before the read has happened,
exposing, among other, its address and size; or after the read
has happened, additionally exposing its value.

Appendix D.
Vulnerability Details

Table 4 provides a more detailed breakdown of the
vulnerable code locations found by Pandora, as also sum-
marized in Table 2 and discussed in Section 7.

TABLE 3. LIST OF BREAKPOINTS ADDED BY PANDORA. PLUGINS CAN HOOK THESE NEW BREAKPOINTS, IN ADDITION TO ALL LEGACY ANGR
BREAKPOINTS, TO INVESTIGATE SPECIFIC EVENTS DURING EXPLORATION. ALL EVENTS CAN BE HOOKED BEFORE AND AFTER THEY ARE EXPLORED.

INDIVIDUAL BREAKPOINTS MAY ADDITIONALLY EXPOSE SPECIFIC ARGUMENTS, E.G., SYMBOLIC MEMORY ADDRESSES AND SIZES.

Breakpoint event Triggered by Pandora module Description

eenter Enclave (Re)entry A state is prepared to (re)enter the enclave
eexit SGX Instructions An EEXIT ENCLU is executed
untrusted_mem_read Enclave Memory Reads that fully lie in untrusted memory
trusted_mem_read Enclave Memory Reads that fully lie in enclave memory
inside_or_outside_mem_read Enclave Memory Reads that may lie in either region
untrusted_mem_write Enclave Memory Writes that fully lie in untrusted memory
trusted_mem_write Enclave Memory Writes that fully lie in enclave memory
inside_or_outside_mem_write Enclave Memory Writes that may lie in either region

TABLE 4. DETAILED EVIDENCE OF PANDORA FINDING AND REPRODUCING VULNERABILITIES BOTH IN PRODUCTION AND RESEARCH RUNTIMES,
WHERE THE “DEPTH” COLUMN LISTS THE NUMBER OF BASIC BLOCKS EXPLORED BEFORE THE VULNERABILITY (MIN–MAX); “L” INDICATES THE

LOCATION (ENTRY, INITIALIZATION, APPLICATION) OF THE VULNERABILITY; AND COLUMN “O” INDICATES WHETHER THE VULNERABILITY COULD
HAVE BEEN FOUND BY EXISTING, STATE-OF-THE-ART SGX SYMBOLIC-EXECUTION TOOLS [37], [38].

Runtime Version Prod Src Plugin L Depth Instances Description O

Newly found vulnerabilities in shielding runtimes (total 200 instances)
EnclaveOS 3.28 ✓ ✗† ABISan E 8 1 MXCSR dependent timing ✗

EnclaveOS 3.28 ✓ ✗† PTRSan E 14–48 10 Compiler removed overflow check ✗

EnclaveOS 3.28 ✓ ✗† PTRSan I 15495–15521 5 strlen on unconstrained ptr (CVE-2023-38022) ✗

EnclaveOS 3.28 ✓ ✗† ÆPICSan I 14–100 33 Various SBDR issues (CVE-2023-38021) ✗

EnclaveOS 3.28 ✓ ✗† CFSan I 51 2 PIC jump before relocation ✗
GoTEE 014b35f ✗ ✓ PTRSan E/I 2–82 31 Various unconstrained pointers ✗
GoTEE 014b35f ✗ ✓ ÆPICSan E/I 2–82 18 Various SBDR/DRPW issues ✗
GoTEE 014b35f ✗ ✓ CFSan I 82 1 Unconstrained RET targets ✗
Gramine 1.4 ✓ ✓ ABISan E 8 1 MXCSR dependent timing ✗
Intel SDK 2.15.1 ✓ ✓ PTRSan I 29–30 2 Unconstrained pointer (CVE-2022-26509) ✗
Intel SDK 2.19 ✓ ✓ ÆPICSan I 234 22 SBDR in enclave initialization ✗

Occlum 0.29.4 ✓ ✓ ÆPICSan I 17222 11 SBDR inherited ✗
Linux selftest 5.18 ✗ ✓ ABISan E 1 1 Unsanitized AC/DF, MXCSR, and FPU ✗

DCAP 1.16 ✓ ✓ ABISan E 1 1 Missing sanitization on entry ✗
Inclavare 0.6.2 ✗ ✓ ABISan E 1 1 Missing sanitization on entry ✗

Linux selftest 5.18 ✗ ✓ PTRSan A 4–7 5 Various unconstrained pointers ✗
DCAP 1.16 ✓ ✓ PTRSan A 3–1075 17 Various unconstrained pointers ✗
Inclavare 0.6.2 ✗ ✓ PTRSan A 8–539 2 Unconstrained src/dst addresses in memcpy ✗

Linux selftest 5.18 ✗ ✓ CFSan A 5 1 PIC jump before relocation ✗
Inclavare 0.6.2 ✗ ✓ CFSan E 3 1 Unsigned jump target comparison in ecall array ✗

Open Enclave 0.19.0 ✓ ✓ ABISan E 11 1 Unsanitized AC (regression) (CVE-2023-37479) ✗
Open Enclave 0.19.0 ✓ ✓ ABISan E 11 1 MXCSR dependent timing ✗
Rust EDP 1.71 ✓ ✓ ABISan E 7 1 MXCSR dependent timing ✗
SCONE 5.7.0 ✓ ✗ ABISan E 3 1 Unsanitized FPU (CVE-2022-46487) ✗
SCONE 5.7.0 ✓ ✗ PTRSan I 25–1827 10 Various pointer issues (CVE-2022-46486) ✗
SCONE 5.7.0 ✓ ✗ ÆPICSan I 25–1827 11 Various SBDR/DRPW issues (CVE-2023-38023) ✗
SCONE 5.8.0 ✓ ✗ ABISan I 5 1 MXCSR dependent timing ✗
SCONE 5.8.0 ✓ ✗ ÆPICSan I 1342–1624 3 Various SBDR issues ✗
SCONE 5.8.0 ✓ ✗ PTRSan I 1621 3 Unconstrained read ✗
SCONE 5.8.0 ✓ ✗ CFSan I 864 1 PIC jump before relocation ✗

Reproduced vulnerabilities in older versions (total 69 instances)
GoTEE 014b35f ✗ ✓ ABISan E 3 1 Unsanitized FPU [22] ✗
Gramine 1.2 ✓ ✓ ÆPICSan I 22–55 10 Various SBDR/DRPW issues ✗
Intel SDK 2.1.1 ✓ ✓ ABISan E 3 1 Unsanitized DF/AC [21]; FPU [22] ✓
Intel SDK 2.13.3 ✓ ✓ ÆPICSan I 207–6198 28 Various SBDR/DRPW issues ✗
Open Enclave 0.4.1 ✓ ✓ ABISan E 4 1 Unsanitized DF [21] ✗
Open Enclave 0.4.1 ✓ ✓ PTRSan I 402–1712 13 Unconstrained pointers [21] ✗
Open Enclave 0.4.1 ✓ ✓ ÆPICSan I 442–1712 13 Various SBDR/DRPW issues ✗
Rust EDP 1.63 ✓ ✓ ÆPICSan I 1041–1043 2 Various SBDR/DRPW issues ✗

Legend: † Not open source, but source code was made privately available; Based on above runtime.

Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This paper introduces Pandora, a symbolic execution
tool that analyzes the security of enclave runtimes. The de-
sign of Pandora is focused on providing end-to-end analysis
(including low-level runtime initialization and entry phases)
and being runtime agnostic, extensible, and accessible. Pan-
dora is shown to provide for the first time a comprehensive
analysis of enclave shielding runtimes, discovering 200 new
vulnerabilities across 11 widely used enclave shielding run-
times.

E.2. Scientific Contributions

• Creates a new tool to enable future science
• Identifies an impactful vulnerability
• Provides a valuable step forward in an established field

E.3. Reasons for Acceptance

1) The paper introduces Pandora, a symbolic execution
tool for enclave shielding runtimes. The central goal
of Pandora is on truthful validation of SGX binaries,
considering critical initialization code that prior sys-
tems have overlooked. The tool is runtime agnostic and
therefore applicable to many enclave applications.

2) The paper identifies several new vulnerabilities. The ex-
periments demonstrate the Pandora discovers 200 new
vulnerabilities across 11 widely used enclave shielding
runtimes.

3) The paper provides a valuable step forward in the study
of enclave security. The paper describes the challenges
associated with a sound end-to-end analysis of enclave
interfaces, and the results show that there is still a
significant amount of work to be done to improve the
security of enclave applications.

	Introduction
	Background and Related Work
	Problem Statement and Overview
	Research Gap
	Solution Overview

	Enclave-Aware Symbolic Execution (G1)
	Modeling x86 Instruction Semantics
	Taint Tracking of Attacker Inputs
	Enclave-Aware Memory Model
	Address-Space Partitioning
	Untrusted Memory Accesses
	Enclave Memory Accesses

	Enclave Entry and Reentry
	Enclave Entry
	Enclave Exit

	Path Exploration and State Reduction

	Runtime-Agnostic Enclave Loading (G2)
	Pluggable Vulnerability Detection (G3)
	ABI-Level CPU Register Sanitization
	Attacker-Tainted Configuration Registers
	Enclave Entry Sanitization

	Untrusted Pointer Value Sanitization
	Address Inside or Outside Enclave
	Tainted In-Enclave Address
	Untainted Outside-Enclave Address

	Untrusted Pointer Alignment Sanitization
	Control-Flow Hijacking Validation

	Evaluation
	Selftest Validation Framework
	SGX Runtime Ecosystem Analysis
	ABI Sanitization Issues
	Pointer Sanitization Issues
	ÆPIC Sanitization Issues
	Control Flow Issues

	Discussion
	Conclusion
	References
	Appendix A: Pandora CLI and Report Generation (D1)
	Appendix B: Static Analysis of Enclave Runtimes
	Appendix C: Pandora Breakpoints
	Appendix D: Vulnerability Details
	Appendix E: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

