
About Time: On the Challenges of Temporal
Guarantees in Untrusted Environments

Fritz Alder
fritz.alder@acm.org

imec-DistriNet, KU Leuven, Belgium

Gianluca Scopelliti
gianluca.scopelliti@ericsson.com

Ericsson Security Research, Sweden
imec-DistriNet, KU Leuven, Belgium

Jo Van Bulck
jo.vanbulck@cs.kuleuven.be

imec-DistriNet, KU Leuven, Belgium

Jan Tobias Mühlberg
jan.tobias.muehlberg@ulb.be

Université Libre de Bruxelles, Belgium

Abstract
Measuring the passage of time and taking actions based
on such measurements is a common security-critical opera-
tion that developers often take for granted. When working
with confidential computing, however, temporal guarantees
become more challenging due to trusted execution environ-
ments residing in effectively untrusted environments, which
can oftentimes influence expectations on time and progress.
In this work, we identify and categorize five different levels
of tracking the passage of time that an enclave may be able
to mesure or receive from its environment. Focusing first on
the popular Intel SGX architecture, we analyze what level
of time is possible and how this is utilized in both academia
and industry projects. We then broaden the scope to other
popular trusted computing solutions and list common appli-
cations for each level of time, concluding that not every use
case requires an accurate access to real-world time.
ACM Reference Format:
Fritz Alder, Gianluca Scopelliti, Jo Van Bulck, and Jan TobiasMühlberg.
2023. About Time: On the Challenges of Temporal Guarantees in
Untrusted Environments. In 6th Workshop on System Software for
Trusted Execution (SysTEX ’23), May 8, 2023, Rome, Italy. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3578359.3593038

1 Introduction
Since the rise of atomic clocks, the precise progression of
time is measured by examining the radioactive decay of
atoms. In computing, this is often simulated by quartz clocks
that trade a lower accuracy for affordability in everyday

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SysTEX ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0087-3/23/05. . . $15.00
https://doi.org/10.1145/3578359.3593038

technology. To enable the use of time in human communica-
tion, standards like coordinated universal time (UTC) define
the precise time at a given moment as points of reference.
However, what is colloquially called wall-clock time is an
inherently human-made concept that is agreed upon by so-
cial convention. Unix systems, for example, translate UTC
to system time as the number of passed seconds since the 1st
of January 1970. As such, wall clock time in computing is
a challenging task that is nowadays dealt with by utilizing
time servers and running time synchronization protocols.
In the area of secure systems, recent years have seen the

rise of capable confidential computing solutions that can
protect data in use, such as Intel SGX, AMD SEV, Intel TDX,
and ARM CCA. The key idea behind these trusted execu-
tion environments (TEEs) is to protect critical code and data
in so-called enclaves that are isolated from the rest of the
system stack. Particularly, while the privileged operating
system and hypervisor remain in charge of enclave resource
management and availability, any direct access to enclave
code or data is prevented by means of hardware-level access
control logic. TEEs can, hence, effectively protect sensitive
data while it resides in memory. However, enclaves may still
request untrusted network communication from the poten-
tially hostile operating system to perform computations.
The challenge of time-keeping in the context of confi-

dential computing can be troubling in multiple ways. First,
agreeing on time in a distributed context often relies on ex-
ternal trusted time servers, together with an approximation
of the time delay between server and recipient. However,
enclaves that need time information have to to communi-
cate with remote servers through an untrusted, attacker
controlled environment. This potentially allows the adver-
sary to unpredictably delay network packets.Second, even if
no trusted time server is utilized and time is only communi-
cated between local peers, adversaries can often control the
execution and interruption of enclaves, which may give the
attacker some control to induce further delays.
In this paper, we investigate the challenge of reasoning

about time and providing temporal guarantees in the context
of confidential computing. Particularly, we identify five levels
of increasingly more capable time tracking approaches and

https://doi.org/10.1145/3578359.3593038
https://doi.org/10.1145/3578359.3593038


SysTEX ’23, May 8, 2023, Rome, Italy Fritz Alder, Gianluca Scopelliti, Jo Van Bulck, and Jan Tobias Mühlberg

overview existing timing capabilities in popular TEEs, with
an explicit focus on the widespread Intel SGX architecture
and software ecosystem. Our specific contributions are:

• We identify five distinct levels of tracking the passage
of time from within isolated enclaves.

• Focusing on Intel SGX, we analyze which time levels
can be provided to enclaves and how this is used by the
software ecosystem and in selected academic work.

• We classify other TEE architectures and analyze their
limitations in regards to trusted time-keeping.

• Lastly, we overview use cases and applications, high-
lighting the overall difficulty of guaranteeing trusted
time in untrusted environments.

2 System Model
We consider a general TEE architecture, where a security-
critical application executes in a trusted enclave protection
domain that is isolated from any other software on the sys-
tem, including the privileged operating system and hypervi-
sor. The enclave may further include a shielding system that
offers trusted services to the application, e.g., in form of a
library OS or software development kit (SDK).
This study considers applications that need some notion

of “wall-clock time” from a trusted time source in order to
realize their security objectives. The time source could be
local, e.g., a secure timestamp counter in the CPU, or re-
mote, e.g., a trusted server. We explicitly focus on reasoning
about the wall-clock time that passes between two execution
points, which does not necessarily correspond to the actual
running time of the enclave. That is, while the latter may
be easier to measure, e.g., by counting the number of in-
structions executed in the enclave, it is decidedly not a good
proxy for wall-clock time in the presence of attacker-induced
interrupts that may arbitrarily delay enclave execution.

Note that in case the application needs absolute wall-clock
time, i.e., calendar time, an extra step may be needed such
as an initial time synchronization with a trusted source.

3 Notions of Time
This section identifies five successive levels of time track-
ing approaches for confidential applications, summarized in
Table 1. These levels are additive, so that each level repre-
sents an increasingly more capable and accurate time source.
However, higher levels may also place more demands on the
underlying TEE architecture, and, as discussed later, lower
levels may be sufficient for certain applications.
Figure 1 depicts each time level, together with a sample

time trace reported to and experienced by the enclave. The
top row represents the ground truth, where no attacker is
present and wall-clock time advances linearly and at a con-
stant rate. The running time of the enclave application is
visualized in the colored squares, whereas the clock symbols
represent a query to the abstract time source. The example

2023

2010

2010

T0

wall-clock time

No
Attacker

2023 1970

2024

2024

2025

2025

T2 2023

T3 2023 2024

T1

2023 2040

2023

2010

2024
IRQ

2023 2024

2023 2024

2010

2023 1970

2023 2040

2024

2023 2024

2024

2025

20252023

T4

Figure 1. Visual representation of different time levels with
attacker influences marked in orange. T0 is controlled by the
attacker, T1 can only move forward but make jumps, T2 can
be arbitrarily delayed, and finally in T3 the attacker can still
interrupt the enclave before it utilizes the time. Instead, level
T4 gives the same guarantees as when no attacker is present.

value returned by the time source is indicated above the clock
symbol and will be used in the subsequent enclave computa-
tion, colored blue if the time is correct w.r.t. the wall-clock
time, or orange if time is influenced by the attacker.

T0: No trusted time. The default case is to have no trusted
time, i.e., to fully rely on untrusted input without performing
any checks on the incoming time data. As illustrated in Fig. 1,
the observed time can be any point in the past or in the future
and may vary arbitrarily. While this may suffice for testing
scenarios, e.g., annotating untrusted timestamps in a debug
log, it is clear that any application-specific, security-sensitive
use of time cannot rely on a T0 timer.

T1: Monotonically increasing time. If enclaves only
have access to an untrusted time source, they can perform
certain minimal checks on received timestamps before ac-
ceptance. The most important check to perform here is to
ensure that received time data only ever increases, i.e., that
time never winds backwards. Depending on the granularity
of the untrusted time source and the sampling frequency,
additional checks may be added, e.g., checking that two time
queries should never return the same value or zero. While
these checks are minimal and the underlying time source
is still untrusted, the counter value can be stored inside the



About Time: On the Challenges of Temporal Guarantees in Untrusted Environments SysTEX ’23, May 8, 2023, Rome, Italy

Table 1. Levels of time and the guarantees given by them. Checkmarks identify that a level protects against this type of attack.

Type Added guarantee Rollback Freq. Delay Interrupt Example time source Discussed use case

T0 None Untrusted OS —
T1 Time monotonically advances Ë Untrusted OS + check Time-based policies
T2 Time moves at constant pace Ë Ë ME, timer thread, remote server Rate limiting
T3 Time is read with known delay Ë Ë Ë Secure TSC, MMIO timer Resource counting
T4 Use of time is atomic Ë Ë Ë Ë Trusted scheduler Credential expiration, DRM

enclave and T1 can at least prevent attackers from rewinding
the internal time of an enclave. Since T1 timers cannot rely
on external data, they have to store the time locally. This
makes them prone to rollback attacks where time is reverted
by restarting the enclave with an obsolete local timestamp.

Fig. 1 shows that attackers in T1 can advance time at will
and can trigger arbitrarily large time jumps for the enclave.

T2: Trusted remote time. To improve time-keeping, the
enclave can switch from an untrusted to a remote trusted
time source, guaranteed to have a fixed, known frequency.
As such, this time source can be relied upon for trusted time
information, when standard cryptographic measures are in
place to protect and validate the integrity and authenticity of
the time packets over the untrusted network (e.g., this secure
time channel can be configured as part of the attestation
protocol). Note that the “remote” trusted time source can
be truly remote, e.g., a server reached over the Internet, but
could also be provided on the same system-on-chip, e.g., by
a trusted co-processor. If the monotonicity of the external
time source can be trusted, rollback attacks targeting the time
value are also not possible anymore since on enclave restarts,
the time can be re-queried. Obviously, rollback attacks are
still a threat to enclaves with a T2 timer and above, but they
will not affect the time stored in the enclave.

As the communication channel between the time source
and the enclave is still under the attacker’s control in re-
gards to availability, T2 time requests and responses may be
arbitrarily delayed. Hence, T2 timestamps received by the
enclave can only ever be trusted as a lower bound on the
reference wall-clock time. Figure 1 depicts a potential situ-
ation where the attacker would allow the enclave to query
the time source, but then delay the response.

T3: Trusted local time. In order to prevent arbitrary de-
lay attacks, enclaves must be able to access the trusted time
source through a direct channel without adversary inter-
vention, e.g., when the time source is an on-chip timestamp
counter that can be queried via dedicated CPU instructions. If
both time source and channel are trusted, adversaries cannot
arbitrarily delay timestamps anymore before they reach the
enclave. This, technically, grants enclaves access to accurate
time information with both a lower and an upper bound.
We argue, however, that in order to utilize such accurate

time information in practice, enclaves also need to be able

to act atomically, i.e., without (undetected) attacker-induced
interruptions. Figure 1 depicts a possible attack that is still
possible on T3 where the adversary precisely interrupts the
enclave right after it reads from the trusted time source. The
adversary can then keep the enclave interrupted until it suits
them and only resume the enclave at a convenient time,
effectively reducing the accurate temporal guarantees back
to only the lower bound offered by a T2 time source.

Consider an enclave that only grants access to a resource
if a presented certificate is valid, and denies access otherwise.
If the adversary begins the validation process at a time that
the certificate is still valid, the enclave will read a permissible
time from the time source. Right after the time value has
been read into the enclave, the adversary could however
interrupt the enclave. When the enclave is later resumed,
the adversary could gain access to the resource even if the
initially presented certificate is not valid anymore.

T4: Trusted and atomic local time. The dangers of the
above attack vector are nuanced. Many interruption attacks
on T3 timers only work if the adversary initially had access
to a resource.Thus, arguably, maintaining this access until
after the credentials expired can be considered as a parallel
issue to denial of service attacks where output of the enclave
is delayed by the adversary. We note, however, that for some
applications and use cases this attack vector may not be
acceptable and enclaves should only present an output at the
correct time. We discuss two examples of this in Section 6.4.

4 Intel SGX
The Intel SGX architecture does, in itself, not provide any
notion of trusted time. However, several proposals exist to
provide trusted time services to SGX enclaves.

Platform service. Intel provides platform software (PSW)
to set up and use trusted time and monotonic counters [6].
Particularly, the PSW offers a T2 time source based on a
coarse-grained clock in the Intel management engine (ME),
a chip that physically resides on the same package but is en-
tirely separate from the main CPU. This allows timer-based
policy enforcements on offline platforms that are not neces-
sarily connect to a network. All communication between en-
claves and the ME passes via the untrusted operating system
and is, hence, cryptographically protected, but can be arbi-
trarily delayed. Enclaves can use the sgx_get_trusted_time



SysTEX ’23, May 8, 2023, Rome, Italy Fritz Alder, Gianluca Scopelliti, Jo Van Bulck, and Jan Tobias Mühlberg

API to track the amount of time (in seconds) passed since a
previous read of the timer. ME services are excluded in the
Intel SGX Linux PSW from version 2.8 from 2020 onwards.

Timestamp counter. Initial SGX versions did not allow
to execute the x86 rdtsc instruction to receive the proces-
sor’s internal timestamp counter (TSC) in enclaves. How-
ever, more recent SGX2 processors now support the rdtsc
instruction in enclave mode, with an explicit warning that
the instruction may be trapped and the timestamp returned
may be influenced by the untrusted operating system.

We experimentally confirmed that privileged adversaries
can arbitrarily control the values returned by rdtsc on
SGX2 platforms by directly manipulating the underlying
IA32_TIME_STAMP_COUNTER model-specific register (MSR).
For this, we developed a sample enclave that executes two
rdtsc instructions and returns the measured cycle differ-
ence. One would expect this difference to always be positive
and reflect the elapsed time in between the two rdtsc in-
structions. However, in our proof-of-concept, we make the
observed time in the enclave move “backwards” by inter-
rupting the enclave and overwriting the TSC value using the
privileged wrmsr instruction in between both rdtsc calls.
Thus, we conclude that rdtsc on current SGX platforms is
not any better than an adversary-controlled T0 timer.

We note, however, that the TSCMSR is duplicated per logi-
cal processor and can, hence, only be changed by interrupting
the enclave. That is, as long as the enclave is not interrupted,
any successive rdtsc reads will behave as a trusted T4 timer
that monotonically increases at fixed frequency. This may
be leveraged with upcoming ISA changes [8] that will make
SGX enclaves interrupt-aware. At the same time, the restric-
tion that an enclave is never interrupted may be too limiting
for some real-world deployments.

Academic timers. TrustedClock [14] is a system that re-
lies on an interrupt handler in system management mode
(SMM) to implement functionality that is similar in its se-
curity guarantees to sgx_get_trusted_time by the Intel
SGX PSW. The authors base their security argument on the
handler being loaded at boot time with a secret key that is
not accessible at runtime by the untrusted OS. Enclaves can
then communicate with the handler by establishing a secure
channel based on the pre-shared public key. Aside from the
security implications of including the unattested SMM han-
dler in the trusted computing base, TrustedClock is stated
to not be completely immune to timer modifications by the
untrusted OS. Instead, TrustedClock relies on combining sev-
eral x86 hardware timers and asserting their monotonicity
(similar to T1), thus making it harder for a malicious OS to
precisely tamper with all involved timers at the same time.

TimeSeal [3] utilizes a cohort of multiple threads that each
periodically poll sgx_get_trusted_time to monotonically
increase the time. The authors argue that by using multi-
ple threads and nuanced synchronization policies between

Table 2. Intel SGX software projects and their use of time.
Stars indicate that we prototyped a proof of concept to roll
back time for a project. Intel SDK is shown for Linux/Win.

SDK OE EDP Gramine LKL Occlum Mystikos Ego Enarx

—/T2 T0* T0 T1 T1 T0* T0 T1 T0

the threads, attacks can be limited in their scope. Nonethe-
less, attackers that delay or prevent scheduling of timer
threads at convenient times, such as right before a thread
returns a time response, will be able to skew the reported
time of TimeSeal. Additionally, with the discontinuation of
sgx_get_trusted_time on Linux systems, TimeSeal may
not be implementable anymore as of today.

Software ecosystem. Several shielding systems offer a
“lift-and-shift” approach to port legacy applications to SGX.
However, these applications were not designed for SGX’s
threat model and may rely on sane OS time services.

Table 2 summarizes how existing SGX shielding systems
expose the untrusted OS time to applications. Interestingly,
we found that most projects include a warning, but forward
OS time without any restrictions (T0), whereas the Gramine
and LKL library operating systems at least ensure that time
does not move backwards (T1). We developed two minimal
proof-of-concepts to demonstrate backwards time advances
in OpenEnclave and Occlum. We, hence, recommend that all
projects include minimal checks to adopt the T1 time model.

5 Other Architectures
Intel TDX. The TDX specification [12] discusses TSC vir-

tualization, which provides a consistent virtual TSC value
to a trusted domain (TD) among all its vCPUs. The virtual
TSC starts counting from zero when the TD is initialized and
runs at a fixed frequency defined by a parameter stored in
the TD configuration. Guest TDs can access the virtual TSC
using the rdtsc instructions, and its value is calculated from
the physical TSC adjusted to the TD’s offset and frequency.
We analyzed the source code of the TDX module, which

makes sure that the TSC is not modified before a TD enter
by comparing the current TSC_ADJUSTMSR value against a
reference value stored on TD creation, raising an exception
if a mismatch between the two values occurs. This allows
TDs to obtain a stable and consistent TSC value across TD
lifetime, guaranteeing a time level T3.

AMD SEV. The AMD SEV-SNP [2] extensions introduced
a so-called Secure TSC feature, which should provide en-
hanced protection against TSC manipulations. The Secure
TSC feature can be enabled by a guest VM at boot and pre-
vents the hypervisor from intercepting any rdtsc instruc-
tions called by the guest VM. Furthermore, the calculation
of the TSC value is made using offset and frequency pa-
rameters stored in VM secure memory, thus not accessible

https://github.com/intel/linux-sgx/releases/tag/sgx_2.8
https://cdrdv2-public.intel.com/671508/sgx-sdk-developer-reference-for-windows-os.pdf
https://github.com/openenclave/openenclave/blob/cd72fd7069488ba6f453c8f5f47bd9fd9a6e6c0d/enclave/core/time.c#L8
https://github.com/fortanix/rust-sgx/blob/a7ee253352856b35e54be22c505775c6556ffa82/intel-sgx/enclave-runner/src/usercalls/mod.rs#L1555
https://github.com/gramineproject/gramine/issues/595
https://github.com/lsds/sgx-lkl/blob/b6e838e0034de86b48470b6a6bf87d2e262e65c9/src/enclave/enclave_timer.c#L29
https://github.com/occlum/occlum/blob/500ca21d527f700d458df10b891948627f396d97/src/libos/src/time/mod.rs#L76
https://github.com/deislabs/mystikos/blob/7ce616416a310aabb543517ed3a9625c1f4acb70/kernel/itimer.c#L32
https://github.com/edgelesssys/edgelessrt/blob/9191ff25a0424d21a22c85eb12b09ebe5f407c3f/src/ertlibc/time.cpp#L53
https://github.com/enarx/enarx/blob/4c1d3db4039e1f2af4b251a202e64a2cdc0729fb/crates/sallyport/src/guest/call/syscall/clock_gettime.rs#L16


About Time: On the Challenges of Temporal Guarantees in Untrusted Environments SysTEX ’23, May 8, 2023, Rome, Italy

by a malicious hypervisor. However, it is unclear from the
specification whether the Secure TSC feature prevents the
hypervisor from directly writing into the TSC via the wrmsr
instruction, similar to our proof-of-concept on SGX2. In such
case, the hypervisor could effectively tamper with the TSC
while the guest VM is not running, preventing it from lever-
aging a stable and consistent representation of elapsed time.
Without such guarantee, the TSC counter would only be a
T0 time level for SEV-SNP guest VMs.

ARM TrustZone. ARM TrustZone [15] separates progam
execution into two protection domains, the secure world and
the normal world. Both worlds are hardware-isolated, run
their own OS, and normal-world software is prevented from
directly accessing secure world resources. TrustZone also al-
lows for system devices, such as a time source, to be restricted
to one world. This, however, is implementation specific, with
the TrustZone protection controller being an optional com-
ponent. TrustZone further extends the processor’s interrupt
controller with prioritized secure and non-secure interrupt
sources to prevent denial-of-service attacks from the normal
world. Based on these features, ARM TrustZone supports up
to T4, and has been previously leveraged to implement secure
real-time systems [18] or TPM functionality in software [16].

ARM CCA. ARM confidential compute architecture [4]
adds additional execution worlds to the ARM architecture
that allow to run multiple so-called Realms in parallel to the
ARM TrustZone secure world. All Realms are all managed by
a trusted realm management monitor (RMM) component [5].
While each Realm has direct access to architectural timers,
the RMM does not make scheduling decisions or manage
interrupts, both controlled by the untrusted hypervisor [4].
As such, ARM CCA has access to a T3 time source.

TPM. A trusted platform module (TPM) is a hardware-
based security component that provides a secure foundation
for system integrity usually in form of a co-processor. TPMs
comprise timing components and monotonic counters. Ac-
cording to the specification [17], a TPM includes two primary
timing components referred to as Time and Clock. The Time
component is separate hardware that provides the number
of milliseconds since it has been powered on and cannot be
controlled by software. The Clock component yields a value
that software can advance but can never roll back.
Thus, by mapping this specification to our time levels,

the Clock component only guarantees a T1 time, since a
privileged adversary can advance the Clock value arbitrarily,
while Timemay reach up to the T4 level if an offset is securely
provided to the TPM to align its value to the wall-clock time.
However, according to [17], attackers may change the TPM
clock frequency by at most ±32.5%, which should be taken
into account when checking the time.

6 Use Cases
This section focuses on use cases that rely on some form of
time. To facilitate this discussion, we adopt an incremental
approach, beginning with time-based policies that only ne-
cessitates level T1, and gradually progressing through each
level up to credential expiration, which requires T4.

6.1 Time-Based Policies
A simple time-based policy is that a user that once lost ac-
cess to a resource will not regain access to it. By utilizing
T1, enclaves can enforce this behavior so that the attacker
cannot revert time to regain access. Enclaves can be useful
in systems where the OS is initially in a trusted state but
may become compromised during runtime. In this case, the
enclave would periodically be invoked with linearly increas-
ing timestamps and then at some time be invoked with an
old timestamp. If the attacker timestamp precedes the last
timestamp sent by the benign operating system, the enclave
would be able to detect this attack and prevent access.

It is important to note that, by using T1, the enclave will
not be able to revoke access if the OS does not wish this
to happen, as progress of time is still attacker-controlled.
The only guarantee is that, once revoked, access can not be
reinstated. This is similar to Clock guarantees of TPMs [17].
Similarly, using T1 timers assumes that rollback attacks on
the enclave state can be detected by the enclave. Otherwise,
the adversary could restart the enclave and provide a stale
timestamp or stale sealed data to the restarted enclave to get
the desired result. If rollback attacks on the time value can
not properly be prevented, a T2 timer has to be used.

6.2 Rate Limiting and TOTP
Rate Limiting. Time-based rate limiting is a mechanism
often used to narrow the impact of brute force attacks. Con-
sider a service running in an enclave that performs password
checking [13]. If time is OS-controlled, time-based rate lim-
iting would not be effective as attackers can artificially ad-
vance time. The service would easily be tricked into process-
ing more requests than desired. Thus, T1 is not a sufficient
time level for rate limiting. Only when the frequency of the
clock is independent from the attacker can the enclave rely
that at least a minimum amount of time has passed.
This use case does not have higher requirements on the

time source than a T2 time source. It does not matter whether
a minute or a year has passed between two requests as long
as at least a minimum amount of time has passed. If the
untrusted OS increases the time between requests, this does
not go against the security guarantees offered by rate limiting
and would only impact availability of the service.

TOTP. Time-based one-time passwords (TOTPs) [10] are
commonly used in second-factor authentication systems.
The algorithm takes as input a fixed parameter 𝑘 (e.g., a
key) and a variable parameter 𝑥 , and gives as output the



SysTEX ’23, May 8, 2023, Rome, Italy Fritz Alder, Gianluca Scopelliti, Jo Van Bulck, and Jan Tobias Mühlberg

one-time password, which is simply computed as a HMAC
truncated to the desired size. In TOTP, the variable parameter
𝑥 depends on the current time 𝑡 , an initial value 𝑡0, and a fixed
time window𝑊 according to the equation 𝑥 = ⌊(𝑡 − 𝑡0)/𝑊 ⌋.
Typically, 𝑥0 is equal to 0 and𝑊 is equal to 30 seconds. This
means that, within the same 30-second window, the resulting
OTP will always be the same, provided that the same k is
given as input. As such, attackers who have control over the
time source, as in levels T0 and T1, could potentially slow
down or even freeze the time perceived by the TOTP server,
preventing the OTP from changing. This could be exploited
by attackers to circumvent the second factor authentication
provided by TOTP, either through brute-force attacks or by
reusing an old OTP previously used by the legitimate user.
Thus, we conclude that TOTP requires a T2 time source.

In the context of Intel SGX, a few projects have proposed
the use of TOTP authentication. For instance, SGX-UAM [19]
utilizes TOTP to authenticate a client to the identity provider,
while SCONE [7] employs it as a second-factor authentica-
tion for their configuration and attestation server. While the
former utilizes sgx_get_trusted_time, now discontinued
on Linux, it is unclear which time source is used by the latter.

6.3 Resource Accounting
When utilizing confidential computing in cloud environ-
ments, both users and cloud providers may require a trust-
worthy and accountable measurement of spent resources
during a computation. Interesting nuances with this use case
occur when code running inside the enclave is not necessar-
ily trusted by both parties that wish to rely on the measure-
ment. Take for example the case of Function-as-a-Service in
enclaves [1]. There, workload providers run a workload and
only wish pay for the resources used. If possible, workload
providers may want to pay less than what they owe. Cloud
providers, on the other hand, may wish to overestimate the
resources consumed and demand more compensation.
The cloud provider can always make accurate estimates

on enclave time, since the workload runs on their infras-
tructure. However, the workload provider cannot trust any
time levels below T3: If the untrusted OS controls the time,
such as in T0 or T1, time can be manipulated to overesti-
mate resource consumption, leading to higher billing for the
workload provider. Furthermore, even with a T2 clock the
cloud provider could arbitrarily delay the enclave communi-
cation with the clock and artificially increase the workload
time. Only if the channel to the clock is independent from
the cloud provider, and the clock is independent from influ-
ence, the time source can be accurately utilized for resource
accounting. Note that, without a full T4 utilization of the
clock, the cloud provider could still cheat and interrupt the
workload for periods of time. In this case, the system would
need to be set up in a way that punishes such behavior and
undercounts time spent potentially interrupted, e.g., through
means of resetting the count on interrupt reentries.

6.4 Credential Expiration and DRM
A common use cases for using time is to check the valid-
ity of credentials, such as PKI certificates and JSON web
tokens (JWTs). Typically, these credentials have a validity
window defined by a Not Before and a Not After field. Thus,
it is important that the time source provides a reliable time
to correctly validate such credentials, e.g., during the TLS-
handshake or the authorization step at application level.
If time is not reliable inside the enclave, it could lead to

security breaches such as allowing access to sensitive data
to unauthorized users. If an untrusted T0 or T1 clock is used,
attackers may rewind the time perceived by the enclave to
fall within the validit window of an expired certificate. If
instead stronger T2 or T3 timers are used, the adversary may
still induce network delays and/or interrupts to coerce the
enclave into accepting credentials that were valid at the be-
ginning of the communication, but have expired before their
actual use. This problem is exacerbated when credentials are
short-lived: typically, access tokens are refreshed frequently
and thus have a rather short lifetime of minutes to hours [11].
Thus, the enclave should only trust a time level T4 in order
to make correct decisions.
The open-source rust-mbedtls library written by Fort-

anix [9] allows TLS-termination inside SGX enclaves. Time-
validity of certificates is only checked if the time feature
is enabled, which means that either it is not checked at all
(if disabled), or it is checked against the insecure OS time
(if enabled). This shows that the absence of a trusted time
source in SGX can potentially compromise the security of ap-
plications, thus software engineers should take into account
such limitations when developing their applications.

The use case for DRM can be reduced to an instance of cre-
dential expiration, where a user wants to access a resource
that should already be locked to them. If the enclave is in-
terrupted after the authorization check but before the use of
the resource, the latter might take place when the user has
no longer permission to access it.

7 Conclusions
Tracking the passage of time is nuanced when relying solely
on measurements that are partially controlled by an adver-
sary. To better reason about the usage of time inside TEEs,
we identified five progressive levels of time-keeping, T0 to
T4 and classified the popular Intel SGX as well as other com-
monly used TEEs. Considering relevant use cases such as
rate limiting or resource counting, we show that not every
application requires access to the highest level of time, for
which existing solutions may already suffice. However, this
classification also shows that other use cases, such as cre-
dential expiration, need stronger time guarantees that most
architectures cannot yet provide. Thus, reliable time-keeping
is highly application-specific and software engineers should
take into account the limitations of current technologies.



About Time: On the Challenges of Temporal Guarantees in Untrusted Environments SysTEX ’23, May 8, 2023, Rome, Italy

Acknowledgments
This research is partially funded by the Research Fund KU
Leuven, by the Flemish Research Programme Cybersecurity,
and by the CyberExcellence programme of the Walloon Re-
gion, Belgium. This research has received funding under
EU H2020 MSCA-ITN action 5GhOSTS, grant agreement no.
814035. Fritz Alder and Jo Van Bulck are supported by a grant
of the Research Foundation – Flanders (FWO).

References
[1] Fritz Alder, N Asokan, Arseny Kurnikov, Andrew Paverd, and Michael

Steiner. 2019. S-faas: Trustworthy and accountable function-as-a-
service using intel SGX. In Cloud Computing Security Workshop.

[2] AMD64 Technology. 2023. AMD64 Architecture Programmer’s Manual
Volume 2: System Programming. Specification.

[3] Fatima M Anwar, Luis Garcia, Xi Han, and Mani Srivastava. 2019.
Securing time in untrusted operating systems with timeseal. In 2019
IEEE Real-Time Systems Symposium (RTSS). IEEE, 80–92.

[4] ARM. 2021. ARM CCA Security Model 1.0. Security Model (SM).
[5] ARM. 2023. ARM Realm Management Monitor specification. Specifica-

tion.
[6] Shanwei Cen and Bo Zhang. 2017. Trusted time and monotonic coun-

ters with intel software guard extensions platform services. (2017).
[7] SCONE Confidential Computing. 2023. 2FA with Time-based One-

time Passwords. https://sconedocs.github.io/CAS_session_lang_0_3.
(2023).

[8] Intel Corporation. 2022. Asynchronous Enclave Exit Notify and the
EDECCSSA User Leaf Function. White Paper.

[9] Fortanix. 2023. Idiomatic Rust wrapper for MbedTLS. https://github.
com/fortanix/rust-mbedtls. (2023).

[10] Internet Engineering Task Force (IETF). 2011. TOTP: Time-Based One-
Time Password Algorithm. RFC- Proposed Standard 6238.

[11] Internet Engineering Task Force (IETF). 2013. OAuth 2.0 Threat Model
and Security Considerations. RFC- Informational 6819.

[12] Intel. 2022. Architecture Specification: Intel® Trust Domain Extensions
(Intel® TDX) Module. Specification.

[13] Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad
Mannan, and N Asokan. 2018. Safekeeper: Protecting web passwords
using trusted execution environments. In WWW Conference.

[14] Hongliang Liang and Mingyu Li. 2018. Bring the Missing Jigsaw Back:
TrustedClock for SGX Enclaves (EuroSec’18).

[15] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone:
A Comprehensive Survey. ACM Computing Surveys (CSUR) 51 (2019).

[16] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah
Cox, Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Löser,
Dennis Mattoon, Magnus Nyström, David Robinson, Rob Spiger, Stefan
Thom, and David Wooten. 2016. fTPM: A Software-Only Implementa-
tion of a TPM Chip. In USENIX Security Symposium.

[17] Trusted Computing Group. 2019. Trusted Platform Module Library,
Part 1: Architecture. Specification TPM 2.0 Library.

[18] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and Ning Zhang. 2022.
RT-TEE: Real-time System Availability for Cyber-physical Systems us-
ing ARM TrustZone. In 2022 IEEE Symposium on Security and Privacy.

[19] Liangshun Wu, HJ Cai, and Han Li. 2021. SGX-UAM: A secure unified
access management scheme with one time passwords via intel sgx.
IEEE Access 9 (2021), 38029–38042.

https://sconedocs.github.io/CAS_session_lang_0_3
https://github.com/fortanix/rust-mbedtls
https://github.com/fortanix/rust-mbedtls

	Abstract
	1 Introduction
	2 System Model
	3 Notions of Time
	4 Intel SGX
	5 Other Architectures
	6 Use Cases
	6.1 Time-Based Policies
	6.2 Rate Limiting and TOTP
	6.3 Resource Accounting
	6.4 Credential Expiration and DRM

	7 Conclusions
	Acknowledgments
	References

