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Abstract
Intel® Software Guard Extensions (Intel® SGX) supports the
creation of shielded enclaves within unprivileged processes.
While enclaves are architecturally protected against malicious
system software, Intel SGX’s privileged attacker model could
potentially expose enclaves to new powerful side-channel at-
tacks. In this paper, we consider hardware-software co-design
countermeasures to an important class of single-stepping at-
tacks that use privileged timer interrupts to precisely step
through enclave execution exactly one instruction at a time,
as supported, e.g., by the open-source SGX-Step framework.
This is a powerful deterministic attack primitive that has been
employed in a broad range of high-resolution Intel SGX at-
tacks, but so far remains unmitigated.

We propose AEX-Notify, a flexible hardware ISA exten-
sion that makes enclaves interrupt aware: enclaves can regis-
ter a trusted handler to be run after an interrupt or exception.
AEX-Notify can be used as a building block for implement-
ing countermeasures against different types of interrupt-based
attacks in software. With our primary goal to thwart determin-
istic single-stepping, we first diagnose the underlying hard-
ware behavior to determine the root cause that enables it. We
then apply the learned insights to remove this root cause by
building an efficient software handler and constant-time dis-
assembler to transparently determine and atomically prefetch
the working set of the next enclave application instruction.

The ISA extension we propose in this paper has been incor-
porated into a revised version of the Intel SGX specification.

1 Introduction

Intel® Software Guard Extensions (Intel® SGX) [16] is both
the first commodity trusted execution environment (TEE) and
the first TEE to become widely used in confidential comput-
ing. Intel SGX enables the construction of shielded regions
of user-space memory called enclaves. Architectural access
controls and hardware features such as memory encryption
protect Intel SGX enclaves from privileged software adver-
saries, as well as some physical attacks. Applications range

from federated learning and data analytics to generic confi-
dential or shielded containers that can protect a variety of
workloads. Importantly, the current and future generations of
Intel Xeon processors improve the support for these emerg-
ing use-cases by increasing Intel SGX’s protected memory
capacity by up to 1500×.

At the same time, Intel SGX introduced a new, strong
adversary model, which has incentivized novel offensive re-
search. For example, researchers have found side-channel
approaches that infer confidential data from enclaves without
violating Intel SGX’s architectural security properties. These
approaches often use processor features available only to priv-
ileged software to enable or amplify various side-channel
analysis techniques [2, 26, 45, 63–66, 69]. For example, Xu et
al. [71] first showed how a malicious OS can manipulate an
Intel SGX enclave’s page tables to trigger a fault each time the
enclave accesses a different 4 KiB page, exposing a noise-free
trace of the code and data pages accessed by the enclave. A
variety of solutions have been proposed to mitigate this class
of controlled-channel attacks [18, 47, 56, 59].

A remaining unsolved problem is a class of attacks that
abuse privileged hardware interfaces, such as the advanced
programmable interrupt controller (APIC), to collect side-
channel measurements at a very fine temporal resolution—
ultimately even at a maximal instruction-level granular-
ity [63]. An open-source tool called SGX-Step [63] has
made this APIC-based “single-stepping” technique widely
available to academic researchers. SGX-Step has, subse-
quently, been used in a long and ongoing line of high-
resolution, interrupt-driven side-channel attacks against Intel
SGX [2,3,7,10,19,26,30–32,43,45,49–51,54,57,60–62,64].
A considerable fraction of these attacks critically relies on
SGX-Step’s deterministic single-stepping ability to sample
at a perfect, instruction-level granularity. For instance, to
reconstruct precise execution timings of individual enclave
instructions [28, 49, 64], or to overcome the coarse-grained
4 KiB spatial resolution of prior controlled-channel attacks
by observing the exact number of single-stepped instructions
within a slightly unbalanced, intra-page conditional control



flow [2, 3, 36, 45, 62]. Some attacks have, furthermore, used
a related “zero-step” technique to replay transient execu-
tion [58] or repeat power consumption measurements [43].

While side-channel attacks and their mitigations have re-
ceived justifiable attention over the past several years, the
study of fine-grained execution control techniques—and es-
pecially their mitigations—has been pursued with less fervor.
Existing mitigation attempts fall fundamentally short in that
they do not address the root cause, e.g., heuristically detecting
suspicious interrupt rates [9, 46, 55], observing performance-
monitoring counters [39], or resorting to data randomization
schemes [38]. Interrupt detection heuristics are impractical
in real settings where benign interrupt storms can trigger
false positives. Performance-monitoring mitigations have
been proven to be fragile and ineffective [31, 35]. Moreover,
several of these solutions are not compatible with existing
hardware [39,47,59] or require custom compilers and scarcely
available (deprecated) CPU extensions, such as Intel® Trans-
actional Synchronization Extensions (Intel® TSX) [9, 38, 55].

In this paper, we present principled experiments that il-
luminate the true root cause of the hardware behavior that
allows SGX-Step to single step an Intel SGX enclave. Our
findings suggest that it is not possible to mitigate SGX-Step
with hardware modifications alone. Hence, we propose a
novel hardware-software co-design. The hardware compo-
nent is an instruction set architecture (ISA) extension to Intel
SGX called AEX-Notify, which allows enclaves to opt-in to a
notification delivered by the processor whenever the enclave
is interrupted or encounters an exception. The software com-
ponent resides in the trusted enclave shielding runtime and
consists of a constant-time disassembler and a crafted assem-
bly stub that transparently speeds up the next instruction to be
executed by the enclave application by atomically prefetch-
ing its working set, thus making the application instruction
statistically unlikely to “hit” with a timer interrupt.

We use empirical evidence paired with statistical reason-
ing to evaluate the degree to which the mitigation prevents
the adversary from deterministically single-stepping an en-
clave instruction stream. Furthermore, we comprehensively
categorize the landscape of existing interrupt-driven Intel
SGX attacks, and we conclude that our proposed defense
may thwart attacks that critically rely on deterministic single-
stepping, including the powerful interrupt latency [28, 49, 64]
and interrupt counting [2, 3, 36, 45, 62] primitives, while
also more generally limiting the temporal resolution of In-
tel SGX side-channel [10, 20, 26, 27, 30, 32, 41, 44, 57] or
transient-execution [51, 54, 60, 61] attacks that employ fre-
quent, interrupt-driven probing.

The ISA extension proposed in this paper has been incorpo-
rated into a recent revision to the Intel SGX specification [12].
We conclude the paper with a brief survey of other attacks
that could conceivably be mitigated using AEX-Notify.
Contributions. In summary, our main contributions are:

• We propose a novel hardware-software co-design called

AEX-Notify that allows Intel SGX enclave software to
mitigate interrupt-driven attacks by deploying mitiga-
tions in software. We demonstrate the viability of this
approach by applying it to completely disrupt determin-
istic single-stepping attacks against Intel SGX enclaves.

• We design and implement a novel constant-time instruc-
tion decoder that allows the mitigation to protect the
vast majority of x86 instructions from malicious single-
stepping or zero-stepping (e.g., 98.0% of instructions
across 106 Intel SGX runtime binaries).

• We identify the hardware behavior that enables the mali-
cious single-stepping technique used by SGX-Step. This
analysis has informed the first two contributions.

• We evaluate the effectiveness of our approach through
empirical observations in an attacker-favored experimen-
tal setup, paired with statistical reasoning.

• Our proposed ISA extension has been adopted by Intel.

2 Background

2.1 Intel SGX

Memory Management. An Intel SGX enclave is a hardware-
protected contiguous region of virtual memory within a pro-
cess. Threads outside the enclave cannot execute code within
the enclave, nor can they read data from the enclave. An
enclave’s page tables reside outside the enclave and are man-
aged by the untrusted OS. Hence, Intel SGX uses a protected
enclave page cache map to preserve the integrity of enclave
memory translations. This mechanism does not, however,
prevent the OS from manipulating other paging controls, such
as the present (P), accessed (A), and dirty (D) bits, which
have been used to demonstrate novel side-channel attacks
against Intel SGX [65, 66, 71]. Intel SGX also flushes trans-
lation lookaside buffer (TLB) entries for enclave addresses
when entering and exiting an enclave [16]. This prevents stale
virtual address translations from potentially violating Intel
SGX’s confidentiality and integrity properties.
Execution Control. An enclave may have one or more thread
control structures (TCSs), each of which defines a fixed entry
point within the enclave. A thread enters an enclave by in-
voking the EENTER instruction with the address of one of the
enclave’s TCSs. A thread exits the enclave by invoking the
EEXIT instruction. The Intel SGX SDK composes EENTER
and EEXIT into an abstraction called an ecall [33], which is
similar to calling a function exported from a shared object or
DLL. Inversely, the SDK also composes EEXIT and EENTER
into an ocall abstraction that allows the enclave to call out-
ward to untrusted functions. Because the TCS allows a single
fixed entry point, the SDK’s enclave entry logic must examine
register arguments and/or internal state to determine whether
to execute an ecall, an ocall, or to handle an exception.

Intel SGX enclaves may also encounter asynchronous exit-
ing events, including inter-processor interrupts (IPIs), timer
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Figure 1: Intel SGX flows to call into and out of an enclave
(left); flows to asynchronously exit ( A ) and resume ( D ) the
enclave, and optionally handle an exception ( B , C ) (right).

interrupts from the APIC, and exceptions such as page faults.
Any of these events trigger an asynchronous enclave exit
(AEX), which saves the current processor context to a state-
save area (SSA) frame within the enclave, indexed by a TCS
field called TCS.CSSA (current SSA). After saving the context,
AEX increments TCS.CSSA. Untrusted software can later in-
voke the ERESUME instruction, which decrements TCS.CSSA
and restores processor context from SSA[TCS.CSSA], thus
allowing the thread to resume enclave execution at the point
where the AEX was triggered. If the enclave must handle
an exception (e.g., triggered by executing an unsupported
instruction) then the untrusted runtime may instead invoke
EENTER. The handler can determine and address the cause
of the exception, e.g., by examining and modifying the con-
tents of SSA[0]. The thread may then EEXIT the handler and
ERESUME the enclave application. Unlike ERESUME, EENTER
does not decrement TCS.CSSA. Therefore, a second AEX
will save the processor context to SSA[1], leaving intact the
context saved to SSA[0] during the first AEX.

The interaction between these instructions and the SSA
frames is depicted in Figure 1. Note that most Intel SGX
runtimes use a two-stage exception handler design. The first
stage executes in the SSA[1] context and is carefully imple-
mented to avoid triggering an exception that would require
a third SSA frame to handle. If the first stage cannot diag-
nose or resolve the exception, it expands the call stack, copies
the contents of SSA[0] to the stack, and redirects SSA[0]’s
instruction pointer to point to the second-stage exception han-
dler. The thread “jumps” to the second stage by EEXITing
the first and then invoking ERESUME. The second stage may
query custom exception handlers registered by the enclave
application. The benefit of this design is that the number of
nested exceptions that can be handled is limited by the size of
the call stack, instead of the number of SSA frames. Hence,
most enclaves allocate only two SSA frames per thread.
Side Channels. There are numerous microarchitectural side-
channel attacks that either predate TEEs or exist indepen-
dently from them. For example, cache set contention attacks
such as PRIME+PROBE were described eight years before
Intel SGX was made public [48], and more recently Aldaya
et al. [4] described a simultaneous multithreading (SMT) port
contention attack across any kind of execution environments

(e.g., user to user, user to kernel, user to TEE, etc.).
It is worth emphasizing that these side-channel attacks do

not violate Intel SGX’s architectural security properties. In-
tel’s SGX developer reference explicitly states that: “Intel®

Software Guard Extensions is not designed to handle side
channel attacks or reverse engineering. It is up to the Intel®

SGX developers to build enclaves that are protected against
these types of attack” [33]. This type of protection can be
achieved by strict adherence to constant-time programming
principles, which is challenging to implement at scale and has
not seen broad adoption outside of the cryptographic commu-
nity. Therefore, confidential computing workloads may be
susceptible to side-channel attacks that can be amplified by
malicious single-stepping.

2.2 The SGX-Step Framework

Overview. SGX-Step [63] is an open-source framework that
allows a privileged software adversary to accurately single-
step through a production Intel SGX enclave using APIC
timer interrupts. Although debug enclaves can be trivially
single-stepped using the x86 trap flag, production enclaves
were never intended to be single-stepped by untrusted code.

SGX-Step provides two complementary interfaces to con-
trol the execution of a victim enclave: timer interrupt-driven
and page fault-driven. The former can be used to precisely ad-
vance an enclave one instruction at a time, whereas the latter
can be used in controlled-channel attacks [71] to break upon
selected code or data page accesses at a coarser-grained 4 KiB
granularity (which we consider out-of-scope in this work).
Alternatively, the page-fault interface can also be abused to
cause an adversary-chosen enclave instruction to repeatedly
fault without making forward progress, a technique called
“zero-stepping” [54, 58, 60].
Timer configuration. In contrast to earlier, coarser-grained
enclave interruption via custom kernel patches [27, 41, 44],
SGX-Step drastically reduces the amount of code between
arming the timer and execution of the victim enclave. Timer
interval prediction is, therefore, considerably simplified by
configuring the memory-mapped APIC timer register directly
from user space, right before re-entering the enclave with
ERESUME. SGX-Step by default operates the APIC timer in
one-shot mode, requiring the developer to specify a suitable
timer interval to reliably land the interrupt in the first enclave
instruction following ERESUME. This platform-specific con-
figuration parameter can be determined via a calibration tool
using an attacker-controlled debug enclave.

Several studies have reported highly accurate single-
stepping results with SGX-Step (cf. Section 3). In the original
evaluation [63] on benchmark enclaves with several hundreds
of thousands of instructions, the vast majority of SGX-Step in-
terrupts (> 97%) were found to arrive within the first enclave
instruction after ERESUME, i.e., forcing the enclave to “single-
step” and make exactly one instruction progress. Crucially, no



“multi-step” events were observed and all the remaining inter-
rupts were found to land within ERESUME itself, i.e., causing
the enclave to “zero-step” and make no architectural progress.
More recent SGX-Step extensions [45, 64], furthermore, ob-
served that such zero-step events can be trivially detected and
deterministically filtered out by checking the “accessed” bit
in the enclave’s code page table entry (PTE), which will only
ever be set by the processor when the interrupt arrived after
ERESUME and at least one enclave instruction has indeed been
retired. As such, after configuring a conservative timer inter-
val that precludes multi-steps, SGX-Step achieves noiseless
single-stepping at a perfect, instruction-level granularity.

3 The Danger of Single-Stepping Attacks

This section presents an overview of published attacks that
critically rely on SGX-Step’s ability to forcibly “single-step”
a production enclave exactly one instruction at a time, and,
hence, motivate the mitigation described in this paper.
Interrupt Latency. During single-stepping, interrupts are
delayed until instruction retirement, and the response time
to service an interrupt, hence, depends on the instruction
executed in the victim enclave. Interrupts themselves thus
represent a subtle source of microarchitectural leakage, al-
lowing single-stepping adversaries to effectively split overall,
start-to-end enclave execution time into a more telling se-
quence of individual instruction timings.

This insight was first demonstrated in the Nemesis [64]
attack, which used SGX-Step to collect an interrupt latency
trace describing the execution time for each individual enclave
instruction. Nemesis showed that such interrupt latency traces
may reveal several fine-grained microarchitectural properties
about the interrupted enclave instruction, including opcode,
operand values, page-table walks, and cache misses. Interrupt
latency has, furthermore, been used to infer store buffer occu-
pancy (store buffers are flushed on AEX) [28]. More recently,
the Frontal [49] attack extended Nemesis and leveraged SGX-
Step to study subtle interrupt latency variations based on the
alignment of enclaved store instructions.

Both Frontal and Nemesis critically rely on deterministic
single-stepping to precisely sample individual enclave instruc-
tions and correlate measurements from different executions.
In other words, their accuracy and scope would have been
severely hampered without SGX-Step’s guarantees to step
exactly one instruction at a time.
Interrupt Counting. Crucially, in sharp contrast to notori-
ously noisy timing channels, the ability to perfectly interrupt
and, hence, count the number of instructions executed in a vic-
tim enclave allows deterministic exploitation of the slightest
control flow deviations from only a single run of the victim
enclave (e.g., a tight loop or one-time key generation).

Van Bulck et al. [62] built a noiseless null-byte oracle
that uses SGX-Step to precisely count strlen() iterations

in slightly non-constant-time string pointer validation logic
of the Intel SGX SDK, enabling, amongst others, full AES-
NI key recovery. CopyCat [45] explicitly recognized inter-
rupt counting as a capable attack primitive that adds a de-
terministic temporal dimension to overcome the relatively
coarse-grained 4 KiB page-level spatial granularity of prior
controlled-channel attacks [71]. CopyCat employed SGX-
Step to deterministically extract complete keys from several
popular cryptographic libraries, as well as to defeat a state-of-
the-art compiler hardening technique [29] that was explicitly
aimed at withstanding SGX-Step. Aldaya et al. [2,3] similarly
exploited SGX-Step’s instruction-granular page-access traces
to recover full keys from vetted cryptographic libraries. Kim
et al. [36] identified enclave software versions by likewise
counting the number of instructions between page accesses.

As with the interrupt latency measurements above, the per-
fect precision of deterministic single-stepping is essential for
these interrupt-counting attacks to be practical; they recon-
struct extremely subtle intra-page and intra-cacheline control
flows that may, ultimately, deviate in only a single instruc-
tion and would not otherwise be deterministically detectable.
Moreover, in practical attacks, several such intricate branches
often have to be perfectly reconstructed in close succession
in tight loops in a single run of the victim enclave.
High-Resolution Probing. The most general application
of a single-stepping framework like SGX-Step is to am-
plify known side-channel attacks by collecting arbitrary side-
channel samples at a maximal temporal resolution, i.e., ulti-
mately after every individual enclave instruction.

Such interrupt-driven attacks have been repeatedly applied
to the CPU cache side channel [10, 20, 27, 30, 44, 57], al-
lowing to accurately probe secret-dependent data accesses
in tight loops or to defeat software prefetching mitigations.
Likewise, precise SGX-Step interrupt capabilities have been
used to reveal high-resolution, intra-page secret-dependent
control flow via the branch predictor [32, 41] or to probe
instruction-granular x86 segmentation [26], alignment [62]
or floating-point [6] exceptions. Finally, in the context of
transient-execution [51, 54, 60, 61] or interface [7, 19] attacks,
SGX-Step has also been leveraged to precisely advance an
enclave until a chosen gadget of interest has been reached.
Zero-Stepping. Apart from advancing enclaved execution
one instruction at a time, timer interrupts or page faults may
also be abused to forcibly stall or “zero-step” a victim enclave
without making architectural forward progress.

Zero-stepping was first introduced as an unlimited prefetch
mechanism to reload sensitive CPU registers from SSA mem-
ory into microarchitectural buffers that can subsequently be
leaked via transient execution [54, 60]. MicroScope [58]
recognized that, while zero-stepping does not advance the in-
struction pointer architecturally, the victim enclave may still
transiently execute a small number of operations following the
faulting trigger instruction. These transient instructions are
never architecturally committed and can, hence, be infinitely



replayed through zero-stepping, essentially allowing to col-
lect arbitrarily many (noisy) microarchitectural resource uti-
lization samples during only a single architectural run of the
victim enclave. Such zero-stepping has been abused to consid-
erably amplify side-channel leakage from secret-dependent
data accesses in AES or port contention of arithmetic opera-
tions [58], as well as power consumption measurements [43].
Summary. Interrupts themselves leak fine-grained side-
channel information through either interrupt latency, inter-
rupt counting, or transient replaying. Exploiting this type
of leakage critically depends on victim enclaves not being
interrupt-aware and being forcibly executed exactly zero or
one instructions at a time. Moreover, interrupts can also act
as a capable attack primitive to maximize the temporal reso-
lution of existing side channels. This allows the adversary to
reliably target code patterns that may otherwise be infeasible
to exploit in practice, or to defeat defenses that rely on partial
atomic behavior of the instruction stream [23, 41, 44].

Deterministic single-stepping serves a fundamental build-
ing block of such interrupt-driven attacks, which have repeat-
edly proven both effective and difficult to mitigate in software.

4 SGX-Step Root Cause Analysis

A suitable solution to address fine-grained enclave execu-
tion control requires a precise understanding of how exactly
SGX-Step succeeds in reliably interrupting the first enclave
instruction following ERESUME, which we refer to as the en-
clave application resumption point (EARP). While this may
appear straightforward at first, configuring a timer to reli-
ably fire an interrupt directly after the notoriously complex
ERESUME is non-trivial, as the latter is characterized by a
lengthy and non-deterministic execution time [67]. On the
contrary, EARP may be any valid x86 instruction, including
extremely lightweight instructions without memory operands
that can be efficiently pipelined and only consume a single
micro-op and less than one CPU cycle to execute [1].

Hence, the SGX-Step adversary is tasked with a seemingly
impossible challenge: configure a (coarse-grained) timer to
reliably interrupt the possibly very short EARP directly fol-
lowing ERESUME, whose execution time itself varies greatly
and can take thousands of CPU cycles. We, thus, argue that
the microarchitectural root cause for the apparent success of
SGX-Step has so far not been sufficiently understood, which
is an essential prerequisite for any effective mitigation.
Assisted Page-Table Walk. We found that the key to SGX-
Step’s success lies in its use of the “accessed” (A) bit. Specif-
ically, SGX-Step always clears the A-bit in the victim en-
clave’s page-middle directory (PMD) before arming the APIC
to fire a one-shot interrupt. As explained in Section 2.2, this
bit is only ever set by the processor when at least one instruc-
tion is executed by the enclave and can, hence, be used to
deterministically distinguish between zero-step events where

ERESUME I1
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Arm APIC 
Timer
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Time
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Figure 2: Adversaries can artificially prolong a short enclave
instruction I1 (e.g., ADD) by clearing the “accessed” (A) bit on
the enclave code page. This forces the first enclave instruc-
tion following ERESUME to perform an expensive microcode-
assisted page-table walk to set the A-bit, making it much more
likely that the coarse-grained APIC timer interrupt lands dur-
ing I1 execution (i.e., single-step; detectable when A = 1).

the interrupt arrived too early during ERESUME, versus single-
step events where the interrupt arrived within the EARP.

Crucially, this is not the only relevant effect of the EARP
setting the PMD A-bit. The processor’s page-miss handler is
optimized for the common fast path and uses a much slower
microcode assist to handle the less frequent and more com-
plex case where a PMD or PTE needs to be modified [17,54].
Figure 2 illustrates that this assist has the effect of prolonging
the execution of the EARP instruction by opening an “as-
sist window” of several hundreds of cycles, thus providing
a convenient landing space for the coarse-grained, normally
distributed APIC timer interrupt to arrive with high accuracy.

It is important to note that this microcode assist is unpre-
ventable for existing enclaves. Recall from Section 2.1 that
Intel SGX must flush enclave TLB entries on entry and exit,
which is necessary to preserve Intel SGX’s confidentiality and
integrity. Hence, the processor must go through the page-miss
handler to translate the EARP’s address, and if the page-miss
handler encounters an unset A-bit during that translation, then
it must use a microcode assist to set the bit.

Experimental Results. We experimentally confirmed the
additional latency of an assisted page table walk, which we
found to be normally distributed with µ = 666;σ = 55 cycles
in case an A-bit is reset vs. µ = 27;σ = 30 for a normal page-
table walk without assist on on an Intel Ice Lake processor.

The inverse normal distribution with µ = 10,957 and σ =
73 (i.e., the interrupt arrival timing distribution for the APIC
one-shot mode measured in Appendix A) predicts 99.94 %
single-stepping accuracy for a 500-cycle interval centered at
the mean, which resembles our experimental observations and
the SGX-Step authors’ results [63].

5 Mitigation Objectives

We propose a hardware-software co-design that we call AEX-
Notify. The hardware component (Section 6) is an ISA ex-
tension to Intel SGX that allows trusted enclave software to



react to interrupts. The software component (Section 7) is a
carefully crafted trusted interrupt handler that determines and
prefetches the interrupted application’s working set, such that
the EARP executes quickly and does not fault, thus obviating
the prerequisites for single- and zero-stepping attacks.

Security Notion. Our explicit security goal is to thwart the
ability for privileged adversaries to deterministically single-
step the instructions executed in a victim enclave. With our
defense in place, the adversary capabilities are considerably
reduced to either coarser-grained 4 KiB page-fault attacks, or
non-deterministic noisy microarchitectural attacks. Hence,
our defense offers increased protection to a class of enclave
programs that nowadays can be deterministically exploited
via perfect, instruction-granular single-stepping, including
through interrupt-latency measurements and interrupt count-
ing, and may additionally hamper other types of interrupt-
driven attacks discussed in Section 3.

Adversary Model. We adopt Intel SGX’s standard privi-
leged adversary model. That is, the adversary may arbitrarily
control system settings, repeat enclave execution, run code
concurrently on any other logical processor(s), including the
victim enclave thread’s sibling SMT thread, etc. Of particular
importance is that the adversary may use the APIC to deliver
interrupts at an interval chosen prior to entering an enclave, or
issue an APIC IPI from another logical processor. We assume
that the OS is malicious and can observe and manipulate the
enclave’s page tables within the constraints imposed by In-
tel SGX’s architecture. This assumption has several crucial
implications for our mitigation goals, as the adversary can
deterministically (i) observe all enclave memory accesses at
a 4 KiB spatial granularity; (ii) distinguish read/write/execute
accesses on the same 4 KiB enclave page (through respec-
tively the A, D, and XD PTE attributes); and (iii) observe the
time of the first access to a page at instruction-granular tem-
poral resolution (e.g., via a thread monitoring the enclave’s
PTEs from another logical processor [65]).

Enclave Assumptions. In addition, we make the following
reasonable assumptions about the enclave program:

• It follows the standard System-V ABI for x86-64, e.g.,
it respects the 128-byte red zone, and will not allocate
data 128 or more bytes beyond RSP. Furthermore, after
enabling AEX-Notify, RSP should point to a secure, in-
enclave stack [19], and we assume the higher-order page-
address bits of RSP are known to the adversary (e.g.,
through observing page faults [71] on the enclave stack).

• The code is free of memory-safety bugs [40] and bugs
that may cause the enclave to execute illegal instruc-
tions. Furthermore, the enclave is free of concurrency
bugs [68], i.e., we assume that accesses to data shared
among threads are properly synchronized.

• Enclave code and data pages are properly separated and
the position of RET (0XC3) bytes within the code pages
of the binary layout is known to the attacker.

Mitigation Objectives. We set the following explicit goals:

G1 Obfuscated forward progress. The mitigation must pre-
vent the adversary from reliably advancing the enclave
application by a single instruction (single-step) or repeat-
edly faulting on that instruction (zero-step); it must also
prevent the adversary from detecting whether or how
much instruction-granular, intra-page forward progress
has been made after each enclave re-entry.

G2 Bounded leakage. The information leaked by the mitiga-
tion must be no greater than the information leaked by
the enclave application without the mitigation.

G3 Software compatibility. The mitigation may not change
the enclave application’s computational semantics.

G4 Practicality. The enclave must: (a) incur little runtime
overhead, especially in benign execution environments
where interrupts are relatively infrequent; (b) be deploy-
able to legacy hardware; (c) be compatible with ABI–
compliant enclave binaries, without requiring custom
recompilation; and (d) not interfere with host software.

In-Scope Attacks. In terms of the interrupt-driven attacks
presented in Section 3, our explicit security objective is only
to thwart the precise class of deterministic, perfect single-
stepping attacks. This includes the versatile and fine-grained
interrupt latency [28, 49, 64] and counting [2, 3, 36, 45, 62]
primitives. However, our proposed mitigation does not aim
to completely rule out attacks for which the underlying side
channels are exploited via more generic high-resolution prob-
ing [41, 44, 60], and thus themselves do not critically rely on
single-stepping interrupts. Our mitigation will certainly limit
the temporal resolution of such attacks, however, and, hence,
may raise the bar for exploiting them in practice, although we
do not claim any specific quantifiable improvement.

With regard to zero-stepping attacks [43,58], the particular
software prefetching mitigation presented in this work only
aims to prevent arbitrarily repeating a target enclave appli-
cation instruction, thus blocking replay of important signals
such as execution port or power usage, but does not explic-
itly rule out replaying the side effects of memory accesses
performed by the mitigation itself.

Finally note that our proposed mitigation does not pro-
tect against interrupting enclaves and observing application
code and data page accesses at a coarse-grained 4 KiB spa-
tial resolution. In contrast to the fine-grained, instruction-
granular interrupt-driven attacks we consider in this work,
such controlled-channel attacks have received ample atten-
tion [18, 47, 56, 59] from the research community.

6 The AEX-Notify ISA Extension

In this section, we describe minimal ISA changes to make
enclaves interrupt aware. Our proposed ISA primitive has
been adopted by Intel and incorporated as an extension to
the Intel SGX specification [12]. It is an attestable enclave
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Figure 3: AEX-Notify flow to A opt-in to AEX notifications,
B encounter an AEX, C resume the enclave and deliver the
notification, and D invoke the EDECCSSA instruction to return
to the previous SSA frame without exiting the enclave.

feature, which implies that the (possibly remote) verifier can
check that the enclave has been built on a system that supports
AEX-Notify, and that AEX-Notify has been enabled.

AEX-Notify only requires changes to one existing Intel
SGX instruction, ERESUME, and the addition of one new in-
struction, EDECCSSA. Moreover, these changes can be applied
via a microcode update patch [11]. Hence, the AEX-Notify
design can be backported to many existing processors that
already support Intel SGX, thus achieving objective G4(b) .

Operation Overview. Our proposed AEX-Notify ISA does
not require any changes to untrusted software that enters the
enclave either synchronously with EENTER or asynchronously
with ERESUME (cf. G4(d) ). Only the trusted runtime within
the enclave must be changed to react to AEX notifications, as
depicted in Figure 3 and described in detail below:

1. The enclave thread sets the AEXNOTIFY bit to 1 in one of
its SSA frames, e.g., in SSA[0]. Note that, apart from a
global enable bit per TCS, in our design each SSA frame
has an individual enable bit, as this allows a handler, e.g.,
on SSA[1], to resume as normal without AEX-Notify and,
hence, make progress in the presence of interrupts (cf.
software handler design of Section 7).

2. The enclave thread encounters an AEX, which saves the
thread’s processor context to the current SSA frame and
then increments TCS.CSSA. Note that the AEX-Notify ISA
extension does not modify any aspect of AEX.

3. A thread ERESUMEs into the enclave. The AEX-Notify
ISA extension causes ERESUME to adopt the seman-
tics of EENTER when the AEXNOTIFY bit is set to 1 in
SSA[TCS.CSSA-1]. Hence, the ERESUME instruction does
not restore the previous processor context and does not
decrement TCS.CSSA. Instead, the enclave thread resumes
at the fixed entry point preconfigured in the TCS, allowing
the enclave to handle AEXs in a custom exception handler
when detecting that TCS.CSSA=1 on entry.

4. The enclave thread invokes a new instruction intro-
duced by AEX-Notify called EDECCSSA, which decrements

ERESUME AEX IRQ	handlersync MOV	(%rdi),	%rax

flush TLB restore SSA rand padding

page walk ($RIP) page walk ($RDI) exec time

ACCESSED ?

sync send	IPI

victim CPU
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3
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monitor	PTE

Figure 4: Adversaries can precisely single-step victim en-
claves without resorting to timers via a concurrent spy thread
that monitors unprotected page-table accesses.

TCS.CSSA to allow the enclave to resume execution in the
prior context without re-exiting the enclave, unlike the
legacy flow depicted in Figure 1 (right), which uses EEXIT
followed by ERESUME to resume execution. Note that, un-
like the legacy ERESUME instruction, EDECCSSA does not
restore SSA contents, and enclave software is responsible
to first preserve all required state from SSA[TCS.CSSA-1].

6.1 Considered Design Alternatives

Add a Random Delay to ERESUME. At first sight, it may
be tempting to think of a simpler, hardware-only solution that
naively attempts to thwart single-stepping by randomizing the
execution time of ERESUME. Crucially, however, we do not
consider mere randomization in itself to considerably raise
the bar for SGX-Step adversaries.

First, adversaries may conservatively underestimate the
random padding delay and rely on page-table A-bits to fil-
ter out the abounding zero-step observations, resulting in a
substantially slower, yet accurate single-stepping primitive.
Randomization, therefore, may reduce the accuracy of SGX-
Step per interrupt, but it does not achieve G1 . For example,
Figure 5 (right) illustrates how adversaries may arm the APIC
timer and choose a number n of NOP instructions before re-
suming the enclave, such that the distribution Y for APIC
interrupt arrival has an arbitrarily small overlap m with the the
randomized latency distribution X of a modified ERESUME in-
struction (i.e., most interrupts will zero-step and only very few
single-step interrupts arrive just after ERESUME completion).

Second, Figure 4 illustrates that attackers can always re-
sort to a dedicated spy thread that shoots down the victim
CPU with near-perfect, instruction-granular IPIs [65] when
detecting the page-table walk in untrusted memory after the
randomized ERESUME instruction has retired and before com-
pletion of the enclave instruction.

Move Paging Structures into Enclave Memory. More rad-
ical TEE research prototypes [18, 22] have proposed to place
enclave page tables completely out of reach of the attacker.
However, such an approach clearly violates G4(b) by requir-
ing far-going hardware changes. More fundamentally, in the
absence of encompassing microarchitectural isolation such as
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full cache partitioning, we argue that merely isolating archi-
tectural page-table memory is insufficient to meet G1 . That is,
while this approach prevents a malicious OS from tampering
with paging controls (e.g., A-bits), it does not prevent the
OS from using cache contention to evict those paging control
structures to memory, along with enclave code and data.
Disable A/D-bit Assists while in Enclave Mode. Several
works [47,65] have suggested that Intel SGX processors could
prevent page-table “accessed” and “dirty” bits from being up-
dated while in enclave mode. However, operating systems
require these bits to manage memory, so this approach vi-
olates G4(d) . Furthermore, this approach does not suffice
to meet the crucial G1 property, as it suffers from the same
drawback as the previous approach: there are other demon-
strated techniques, such a cache evictions of PTE entries [65],
that SGX-Step can use to slow the first enclave instruction.
Postpone Interrupts. Another conceivable approach is to
modify the CPU to postpone each interrupt until at least
some minimum number of enclave instructions have exe-
cuted. However, this solution may allow the adversary to
detect forward progress, violating G1 . Moreover, it does not
prevent fault-based zero-stepping (also violating G1 ) and its
implementation complexity prevents it from meeting G4(b) .
Naively delaying interrupts in unprivileged user-space en-
clave programs may, furthermore, interfere with the OS’s
availability requirements and, thus, hinder G4(d) .

7 Enclaved AEX-Notify Software Mitigation

This section describes the software mitigation that uses AEX-
Notify to achieve the objectives listed in Section 5. The key
idea is to dynamically, i.e., after each interrupt, identify and
prefetch the code and data memory locations that will be ac-
cessed by the enclave application resumption point (EARP).
By prefetching these code and data pages in a carefully crafted
assembly stub that is atomically executed before jumping to
the EARP, the mitigation effectively ensures that any subse-
quent accesses to these locations by the enclave application
will hit in the CPU caches. Hence, at least the first EARP
instruction will execute fast and any code or data physical
page addresses needed by EARP will be served from the

processor’s trusted TLB, without triggering a fault or assist.
Figure 5 (left) highlights how our proposed mitigation effec-
tively closes the root-cause interrupt landing zone exploited
by SGX-Step adversaries (cf. top of Figure 2).
Implementation Aspects. We implemented our software
mitigation prototype as an extension to the existing two-stage
exception handler design (cf. Section 2.1) of the open-source
Intel SGX SDK. Particularly, in our design the first-stage
exception handler always runs with AEX-Notify disabled
(i.e., SSA[1].AEXNOTIFY=0), while the second-stage handler
is split into a larger, non-atomic part that is run with AEX-
Notify disabled and a smaller assembly stub that always runs
with AEX-Notify enabled. Note that limiting the use of AEX-
Notify in this way to only a small, atomic part ensures that the
vast majority of the enclave exception handler’s execution can
always make progress, as it can be interrupted and resumed
as before (i.e., possibly one instruction at a time).

We modified the first stage exception handler to reserve a
120-byte persistent memory area under the red zone of the in-
terrupted enclave application’s call stack. This reserved area
will be preserved across any later interrupts of the exception
handler and can, hence, be used to store selected application
registers that are used in our hand-crafted assembly stub, as
explained in Section 7.3. We also modified the first stage
to copy and clear SSA[0].AEXNOTIFY, before making use
of the new EDECCSSA instruction (cf. Section 2.1) to effi-
ciently switch to the second-stage handler without exiting the
enclave. When the second stage C code detects that the origi-
nally interrupted enclave application thread was protected by
AEX-Notify, it will proceed to decode the EARP instruction’s
memory operands (Section 7.1) and locate a RET instruction
on the EARP code page (Section 7.2), before finally handing
over to the assembly stub (Section 7.3). Here, we finally re-
enable AEX-Notify and, in an atomic manner, prefetch the
enclave’s working set before jumping to the EARP.

It is worth noting our software mitigation is not in any
way restricted or specific to the Intel SGX SDK. In fact,
as we make no special assumptions on either the enclave
application binary or runtime system, our mitigation may
also be integrated into alternative Intel SGX enclave SDKs or
library OSs. Such a porting effort would only need to consider
the relatively small glue code to extend the exception-handler
logic, whereas the crucial constant-time instruction decoding
and assembly stub components are largely generic and may
be reused across enclave runtimes.

7.1 Constant-Time Instruction Decoding
We first establish a sensible (over)approximation of the EARP
instruction’s working set, consisting of: (i) the current code
page; (ii) the current stack page; and possibly (iii) the next
data page that will be accessed (read/write). We, furthermore,
extend this base working set with one additional stack page
directly below the interrupted stack pointer, as the final stages



of the mitigation restore registers from the reserved area that
may lie on this stack page, just before jumping to the EARP.

While code and stack pages can be determined trivially
by examining the saved SSA[0] frame, any additional global
data accesses need to be dynamically determined based on the
semantics of the first EARP assembly instruction. Crucially,
this decoding process should be performed fast to minimize
performance overheads (G4(a) ), while also not introducing
new side-channel leakages that cannot be learned from exe-
cuting the enclave application without our mitigation (G2 ).
Existing commodity disassemblers, such as Capstone and
Intel Xed, cannot meet the mitigation objectives because they
are not designed for side-channel resilience. They may, for
instance, be vulnerable to a cache-based timing channel as
they typically rely on one or more memory accesses to an
instruction lookup table that maps an opcode to a semantic
decoding of each instruction. Such a side channel would
leak fine-grained, individual instruction details, which AEX-
Notify aims to hide in the first place (G1 /G2 ). Note that this
constant-time requirement for the mitigation code is espe-
cially stringent considering that, at this stage, the exception
handler is itself not protected by AEX-Notify and may, hence,
be single-stepped with a framework like SGX-Step to amplify
any subtle side-channel leakages.

To overcome this challenge, we implemented a constant-
time decoder (CTD) that extracts the potential memory loca-
tions of the next instruction while adhering to constant-time
programming guidelines [14]. We implemented our design in
around 1.4 K lines of C code, using the CMOV family instruc-
tions for conditional operations and AVX2 instructions to ac-
celerate the table lookup process. To balance implementation
complexity, performance G4(a) , and correctness concerns, we
set as an explicit design goal that the CTD should never report
false-positive memory accesses that are not performed by the
application, whereas we allow occasional false negatives for
unsupported instructions. We evaluate instruction coverage in
Section 8.3, concluding that CTD supports the vast majority
of instructions (over 98 %) in real-world enclave binaries. For
any remaining, unsupported instructions, CTD will always
report that they do not access any memory, thus safeguard-
ing program correctness (G3 ). Even for these unsupported
instructions, however, our mitigation will still prefetch the
default working set, consisting of the current code and stack
pages. Hence, attackers may interrupt or fault on unsupported
instructions only if they feature non-stack data operands.

The CTD first examines the copied SSA frame of the previ-
ously interrupted enclave thread and loads 16 bytes, i.e., the
size of the longest x64 instruction, aligned to a power of 2,
from the code page at the interrupted enclave application’s
instruction pointer. Furthermore, as an interesting edge case,
our CTD implementation makes sure to never fetch bytes
across a page boundary. We use a constant-time instruction
sequence that fetches at most 16 bytes from the enclave ap-
plication’s instruction pointer to the end of the code page,

padding with up to 15 dummy bytes as needed. This subtlety
is necessary to ensure that the CTD never leaks any of the
lower 12 page-index bits of the enclave application’s instruc-
tion pointer, thus preserving the bounded leakage requirement
G2 . Particularly, if the CTD would always unconditionally
load 16 bytes across page boundaries, adversaries may triv-
ially distinguish intra-page conditional control flow by ob-
serving a page fault on the neighboring code page when one
of the paths executes an instruction that falls entirely within
the last 15 bytes of the current enclave code page.

Next, based on the loaded buffer, the CTD decodes the
memory operand of the instruction and decides whether it is
going to access memory, the type of the access (read or write),
and the corresponding target address. If the instruction buffer
was previously padded with dummy bytes and its decoded
length exceeds the current code page boundary, the CTD
will simply report that the instruction does not access any
memory. The key idea of our CTD is to rapidly decode the
necessary memory operands without introducing any opcode-
based memory accesses. To calculate the exact address of the
target memory operands, the CTD first constructs an algebraic
representation of the memory operand, and then it uses a CMOV-
based constant-time access sequence to evaluate it over the
SSA frame register contents, e.g., accessing RAX to compute
the effective address of a memory operand like [RAX+0X38].

7.2 Verifying Page-Table Permissions
It is essential for the mitigation to be effective that the
prefetching performed by the handler is adequate, such that
the first EARP instruction will not anymore fault or perform
a page-table walk. As outlined in Section 5, privileged ad-
versaries can exercise their control over x86 page-table at-
tributes to distinguish read, write, or execute accesses to the
same 4 KiB enclave page. Hence, a naive mitigation stub that
would merely read the EARP’s working set may still violate
G1 when clearing the D-bit in the associated enclave PTE
and inducing another assisted page-table walk for EARP write
accesses, or by inducing zero-step exceptions when mapping
non-executable or read-only pages.
Execute Accesses. To prevent enclaves from being zero-
stepped by an execution permission fault, our AEX notifica-
tion handler finds a RET (i.e., 0xC3) byte within the EARP
code page. The address of this C3 byte is subsequently passed
to the assembly stub (Section 7.3), which will atomically CALL
this RET to verify that the code page is indeed executable, i.e.,
that its execute disable (XD) bit has not been set.

To speed up this process, our implementation uses a thread-
local C3-cache, a software table that maps a partial address
to an offset within the corresponding page that may contain a
C3 byte. A “cache hit” can be confirmed by checking whether
the offset indeed refers to a C3 byte within the code page.
In case of a “cache miss”, the code page must be scanned
sequentially to find a C3 byte. In the rare event that a C3 byte



is not found, then the code page cannot be verified in this
manner. Note that, if C3 bytes are distributed uniformly at a
frequency of 1/256, the probability of not finding a C3 byte
on a given 4 KiB page is less than one in a million.

Importantly, our C3-cache does not introduce any new side-
channel leakage that would violate G2 , as the trace of exe-
cuted pages and the position of C3 bytes in code pages are
assumed known to the adversary (cf. Section 5)
Write Accesses. Any writes about to be performed by the
first EARP instruction need to be similarly anticipated in the
mitigation. Not only to prevent zero-stepping through read-
only page faults, but also to rule out single-stepping through
an assisted page-table walk that sets the PTE “dirty” (D) bit.
That is, upon the first read access to a page, the processor
populates a TLB entry and sets the A-bit in the associated
paging-structure entries. Any subsequent read accesses to that
page will now be served from the TLB and will not anymore
update the A-bit. However, we experimentally confirmed that
the first write to the same page will initiate another expensive
assisted page-table walk that sets the corresponding D-bit
once (as tracked in the corresponding TLB entry).

When the CTD reports that the EARP writes to memory,
our atomic mitigation stub takes care to first read one byte
from the reported address and then write the same byte back
to the same location. Note that we restrict the mitigation to
only write one byte to avoid further complicating the CTD
with decoding operand lengths. Furthermore, to ensure func-
tional correctness (G3 ) in case of multithreaded enclave ap-
plications, CTD never reports write accesses for rare x86
instructions with a LOCK prefix or implicit locking behavior
(e.g., XCHG). As per our explicit assumption in Section 5, we
assume accesses to data shared among threads are properly
synchronized (e.g., any required software locks are held).

7.3 Atomic Prefetching
The final and most critical part of our software mitigation
executes entirely as carefully hand-crafted assembly stub.
The key challenge addressed by this stub is how to securely
prefetch the working set and jump to the EARP in an atomic
fashion, i.e., without being interrupted in between. This is a
crucial requirement to achieve G1 , as any AEX in between
will flush the TLB and again substantially slow down the first
EARP instruction (cf. Section 4). The assembly stub totals
about 180 lines of code and is broken down into two suc-
cessive phases. The first mitigation phase still runs without
AEX-Notify enabled and can, hence, be freely interrupted
with SGX-Step and the normal ERESUME flow. However, the
second “atomic” mitigation phase runs with AEX-Notify re-
enabled, and any interrupt arriving in this second part will,
hence, re-trigger the exception handler flow from the start.
Setup/Rollback Phase. The stub first needs to check whether
the last AEX occurred during the enclave application or dur-
ing the mitigation’s atomic prefetching phase. In case of

the latter, we explicitly roll back the interrupted instruction
pointer and parameter registers, so as to restart the subsequent
atomic prefetching phase from the beginning. Note that all
this needs to be programmed with careful, constant-time con-
structs, however, since the adversary should not be able to
distinguish whether the interrupt landed during or after the
mitigation (G1 ), as further discussed in Section 8.1.

Our implementation first compares the saved SSA[0].RIP
value against the known, contiguous range of the atomic mit-
igation assembly code (taking care to also think about the
edge case where the interrupt may have landed just after the
RET byte on the EARP’s code page was called). Next, we
use a CMOV instruction sequence to save or restore selected
parameter registers from or to the static reserved area un-
der the interrupted enclave application’s stack. Hence, after
interrupting the atomic mitigation phase, the CPU register
and reserved-area memory state will be identical to when the
enclave application was originally interrupted.
Atomic Prefetching Phase. This compact, yet critical part
of the assembly stub is integrally included in Appendix C
for reference. The restartable atomic phase is initiated by
first enabling AEX-Notify, ensuring that any future interrupts
will be redirected to the start of the exception handler, which
will take care of obliviously rolling back any state in case the
interrupt arrived before executing the first EARP instruction.

Next, the stub prefetches the working set. In case the CTD
reported a write instruction, our implementation first reads
and writes back one byte at the provided location. We then en-
ter a tight loop that calls the C3 byte and loads from the begin-
ning of each of the 64 cache lines in each 4 KiB working-set
page. Such repetitions in a tight loop may additionally hinder
any adversary attempts at concurrently evicting working-set
pages. The stub may now restore the small set of registers that
were used in the previous steps to their final EARP values
that were saved onto SSA[0] during the original AEX.

Finally, before jumping to the EARP instruction at which
the original AEX occurred, we insert an additional delay with
50 % probability. This random small delay is not essential for
our defense, but we expect that it may make it even harder
for a possibly more advanced adversary to reliably time the
interrupt directly after the jump to the EARP. The value of
the delay is a configurable parameter for the mitigation, but
should not be chosen too large, so as to minimize the window
for evicting the working set. We set the delay to 20 cycles,
as most application instructions will likely have completed
within this time given a fully prefetched working set.

8 Evaluation

We first present an overall security argument that our defense
meets the mitigation objectives. Next, we empirically evalu-
ate mitigation effectiveness through principled experiments
in attacker-favored conditions, guided by our security analy-
sis. We, then, methodologically evaluate constant-timeness,



correctness, and coverage for the crucial CTD component.
Finally, we report measured performance overheads.

8.1 Security Analysis

Confidentiality (G2 ). We first explain why our mitigation
should not leak secrets that would not otherwise already have
been exposed by the application. Generally, we assume
proper Intel SGX attestation with the latest recommended
microcode [7, 51, 54, 60] or compiler [61] mitigations to rule
out transient-execution attacks.

Regarding application memory contents and interrupted
SSA register values, we carefully designed CTD to be
constant-time (evaluated in §8.3) and made dedicated efforts
to only dereference the interrupted instruction pointer at a
page-level granularity (§7.1). Furthermore, any application
memory accesses performed in the mitigation are legitimate
and may also be performed by EARP, as per our explicit as-
sumptions in §5. As a relevant edge case, we took care to
not prefetch memory addresses that fall outside the enclave
range, as such pointer dereferences are visible to the adver-
sary anyway and may have to be surrounded by additional
microarchitectural cleansing and serialization instructions to
prevent leakage on certain recent Intel processors [7, 15].
Forward Progress (G1 ). To ensure that adversaries cannot
learn whether the interrupt landed during or after the miti-
gation, we carefully programmed the setup/rollback phase
with CMOV instructions (§7.3) and validated that it executes in
constant time. We, furthermore, made sure that the short, yet
critical atomic mitigation stub (§C) is aligned to never cross
a page boundary. The only secret-dependent branch in the
mitigation stub is to conditionally skip the random padding
before jumping to EARP instruction. We explicitly opted to
move the random cycle delay after the prefetching, as the
first iteration of the prefetching loop will be visible to an
adversary concurrently monitoring page-table memory [65],
and, thus, its timing should not depend on whether the se-
cret cycle delay has been added. While this random branch
decision may hypothetically still be later reconstructed via
the branch predictor [32, 41], sampling this information after
the next interrupt would already be practically useless, as
every invocation of the mitigation uses a fresh random bit
to decide whether to delay the next EARP instruction. Note
that randomness is not generated in the atomic stub itself, as
the expensive RDRAND instruction may introduce observable
delays [64], but instead uses a small randomness buffer popu-
lated in the C code of the second-stage exception handler.
Single-Stepping Resilience (G1 ). The key idea behind our
mitigation is to minimize the latency of the next EARP instruc-
tion by prefetching its working set into the CPU caches and
TLB. Hence, the required window (§4) for single-stepping
interrupts to reliably arrive is drastically narrowed, and adver-
saries would have to either (i) configure the timer to hit within
the restricted EARP time window; (ii) exploit any remaining

instances of incomplete prefetching by our mitigation proto-
type; or (iii) find ways to undo or prevent the prefetching.

First, regarding accurate timer configuration, we exhaus-
tively experimented (§8.2 and §A) with all possible APIC
timer and IPI configurations and further improved over the
state-of-the-art SGX-Step setup. Nevertheless, even in this
improved setup and while quiescing the system by disabling
C-States and SpeedStep technology, we conclude that privi-
leged adversaries remain ultimately restricted by the limited
resolution and jitter of the APIC clock. Furthermore, even
with a hypothetical cycle-accurate timer, the adversary would
have to precisely predict the execution time of the atomic
mitigation stub, including the random padding delay, plus the
ERESUME instruction, which is notoriously variable on mod-
ern x86 processors. Crucially, we carefully programmed the
mitigation to hide forward progress, as otherwise adversaries
may attempt to conservatively underestimate the timer inter-
val and rely on detecting premature interrupt arrivals, similar
to bypassing theoretical random ERESUME padding (§6.1).

Second, regarding incomplete prefetching, our CTD covers
the vast majority of x64 instructions (98 % in real-world Intel
SGX binaries; cf. Table 3). For scarce instructions that are not
supported by CTD, only any non-stack, global data accesses
would not be fully prefetched. Adversaries may, furthermore,
still succeed in faulting or interrupting rare x64 instructions
that feature multiple memory operands, or in the unlikely
event that the instruction itself or its data operands cross page
boundaries. We do not expect such uncommon instructions
to occur in secret-dependent paths in practice, but, if needed,
our CTD implementation could always be further extended.

Finally, to undo prefetching before execution of the next
EARP instruction, adversaries may attempt to evict enclave
TLB entries concurrently from a sibling logical core [24, 66].
Note that this is only possible when SMT technology is en-
abled at boot time, which, in response to recent hardware
vulnerabilities [7, 54, 60], is also reflected in Intel SGX re-
mote attestation. The most straightforward approach would
be to simply reload CR3 or use the privileged INVLPG instruc-
tion, which we found, however, to require several hundreds
of CPU cycles [1]. Alternatively, adversaries may attempt to
evict TLB entries by causing contention on the targeted TLB
set. However, this technique can only evict data pages, as
the L1 instruction TLB is statically partitioned across logical
cores [24]. Furthermore, constructing an eviction set requires
several attacker pages sustaining expensive TLB misses [66].
To further frustrate any concurrent TLB eviction attempts,
we explicitly designed the mitigation to prefetch working-set
pages in a tight loop, such that the TLB would be repopulated
in case of any evictions in earlier iterations. In conclusion, we
consider the small time window between repeated prefetch-
ing and EARP execution to be too narrow to allow reliable
concurrent eviction of data pages from the TLB.

Alternatively, instead of targeting the TLB, adversaries may
focus on fully disabling [41,65,66] or causing contention [27,



44] on the CPU cache. We evaluate both techniques in the
next section and conclude that, while they may somewhat
increase probabilities for the adversary, they remain largely
ineffective at bypassing the mitigation and single-stepping
ultimately remains unpredictable and non-deterministic.

8.2 Mitigation Effectiveness Experiments

Experiments were conducted on Intel Ice Lake and Coffee
Lake E processor-based server machines supporting Intel
SGX2 and AEX-Notify.
APIC Timer Accuracy. The challenge of single-stepping
an enclave via privileged timer interrupts is aggravated by
the limited resolution of the local APIC, which is not syn-
chronized with the core clock and operates at a much lower
frequency [16] (e.g., over 100× on the Intel Ice Lake CPU).

We present detailed microbenchmarks in Appendix A that
show that APIC timer interrupt arrival times are normally
distributed with a considerable variance of over σ = 70 CPU
cycles for the default one-shot MMIO mode used by SGX-
Step. Furthermore, as a contribution of independent interest,
we propose an innovative privileged interrupt-gate technique
that allows finer-grained APIC timer deadline configuration
and reduces variance to about σ = 40 CPU cycles. Thus,
we stress-test our defense in an improved experimental setup
that considers adaptive adversaries and further pushes the
boundaries of the existing, state-of-the-art SGX-Step setup.
Benchmark Setup. In our experiments, we first use SGX-
Step to advance the enclave to the beginning of the atomic
mitigation stub, where we force an AEX. Next, we record
the timestamp counter, tsc1, just before ERESUME-ing into
the benchmark enclave, where we immediately record tsc2
before the mitigation executes, and finally record tsc3 at the
EARP. Thus, tsc2− tsc1 captures the latency of ERESUME and
tsc3 − tsc2 captures the latency of the mitigation.

Figure 6: Example experiments resuming to a 5-cycle EARP
load instruction with overlayed APIC interrupt arrivals.

As an illustration, Figure 6 depicts the start and end ex-
ecution times of a 5-cycle EARP load instruction with our

Table 1: Single-stepping success rates for different stimuli.
Adversary Action(s) Single-Step Hit Rate

None 0.042
Clear PTE A-bit 0.107
L1 contention (page/set) 0.118/0.112
L2 contention (page/different set/matching set) 0.114/0.126/0.223
L3 contention (same/separate/all cores) 0.141/0.030/0.104

mitigation, measured for 60 runs on the Intel Ice Lake proces-
sor without attacker interference. We, furthermore, calibrated
the APIC to hit after tsc3 − tsc1 cycles in a separate experi-
ment, and we overlayed the observed actual APIC interrupt
arrival times in the figure. Thus, it is visually apparent that
successful single-stepping events where the APIC interrupt
“hits” within the EARP instruction are infrequent.
Cache Contention. Table 1 summarizes the observed single-
stepping success rates for 100,000 experiments on the In-
tel Coffee Lake E processor with several considered stimuli:
clearing the PTE A-bit, and L1, L2, and L3 cache contention,
affecting either an entire page or a single cache set within
the mitigation’s working set. We used the open-source Mas-
tik [72] library to create cache contention. While some of
the considered stimuli may somewhat increase probabilities
for the adversary, e.g., the highest observed single-stepping
rate increased from about 4 % without attacker interference
to 22 % when applying targeted L2 contention, we conclude
that none of the considered stimuli is effective at bypassing
the mitigation objective and single-stepping clearly remains
non-deterministic.
Cache Disable. We empirically demonstrate that, while en-
claves may be drastically slowed down, disabling the cache
via the privileged CR0.CD interface considerably increases
variance, ultimately making single-stepping less predictable.

In our experimental setup on the Intel Ice Lake processor,
we pin the victim to a specific core and set the CR0.CD bit on
that core. With this setting, the latency of all memory loads is
increased to over 2,000 cycles. We increased the APIC timer
latency to match the execution delay and repeated the single-
stepping attack without additional contention interference for
10,000 times (running for about 2 hours). The observed single-
stepping success rate drops drastically to 0.08 %. Particularly,
among all attempts, 31.98 % of the interrupts land in the
mitigation stub and 67.78 % are multi-step interrupts hitting
enclave instructions following the first EARP instruction.

The single-stepping attack fails primarily because disabling
the CPU cache makes execution latencies highly volatile, due
to the inherent timing instability of DRAM memory accesses.
Specifically, we measured that the execution time variance to
resume the victim with the mitigation significantly increased
from µ = 8,052;σ = 31 cycles when the cache is enabled to
µ = 4,117,125;σ = 1,063,928 cycles without the cache.
Combined Success Rates. Importantly, the success rates em-
pirically determined in Table 1 are for stepping over a single



instruction, whereas practical attacks need several consecutive
successful single-step operations, e.g., to count the number
of iterations in a secret-dependent strlen loop [62,63], or to
distinguish slightly unbalanced branches [2, 3, 45]. Crucially,
our defense was explicitly and carefully designed to provide
practically no indication of forward progress (G1 ). Thus,
when the attacker has no way of knowing how many instruc-
tions passed since the previous interrupt, she can only count
the total number of interrupts. If one of these interrupts is not
perfectly timed to single-step the next EARP instruction, the
resulting interrupt count will not anymore correspond to the
actual number of executed instructions in the targeted appli-
cation. Thus, the probability of perfectly stepping through an
enclaved instruction stream can be modeled as psteps, where
p is the success rate of successfully interrupting a single in-
struction and steps the number of instructions that need to be
successively interrupted for a successful attack.

To illustrate how our defense’s strength may add up in prac-
tical scenarios, consider, for example, a successful single-
step rate of 22 % for an individual instruction, which di-
minishes considerably when needing 10 successive single-
step interrupts: 0.2210 = 0.000000266. Thus, the amount
of attack repetitions needed to successfully single-step 10
successive instructions follows the geometric distribution,
with mean amount of tries until first success provided as
1/(0.2210) = 3,759,398. That is, in this example, over 3.7
million of attack iterations would be needed on average in
order to observe one run that successfully single-steps all 10
instructions. Crucially, note that the adversary has no way
of knowing which of these runs succeeded to single-step all
required 10 instructions, and, hence, which of the millions of
observations would actually contain the relevant side-channel
data and which merely contain irrelevant noise. In contrast to
conventional microarchitectural leakages, observations from
multiple runs cannot be straightforwardly accumulated or av-
eraged out, as the success rates of individual single-stepping
attack iterations are independent of any previous attempts.

In conclusion, we accomplished our objective of thwarting
the attacker advantage from deterministic single-stepping,
and the adversary would be no better of than falling back to
coarse-grained 4KiB page-level or noisy microarchitectural
channels. The execution of the latter, furthermore, would
typically assume that the victim enclave can be ran several
times on the same secret, which is not always possible, e.g.,
for key generation [45, 49].

8.3 Constant Time Decoder Evaluation

Constant-Timeness. Although we followed best practices
while designing and implementing the decoder, constant-
time programming can be notoriously challenging and error-
prone [34]. We, hence, evaluate the constant-time correct-
ness of our decoder using both the static-analysis tool Pitch-
fork [21] and the dynamic-analysis tool Dudect [52].

Pitchfork is a static verification tool working on LLVM
IR level to verify the constant-time property of control flow
and memory access for the target function. Since Pitchfork
only reasons about secret input from memory, we slightly
change our function API to store all the register values into
memory and mark them as secrets. Besides, Pitchfork does
not support verification of SIMD instructions, so we manually
add special handlers for the SIMD instructions we used in the
decoder and verify they are explicitly listed as data operand-
independent timing instructions [13]. After making these two
changes, Pitchfork runs gracefully and verifies the constant-
time correctness of our decoder in LLVM IR. Specifically, we
launch Pitchfork with different optimization levels.1 Pitchfork
analyzes all the basic blocks, verifying that the decoder has
only one branch and no secret-dependent accesses.

Dudect is a dynamic statistical testing tool to uncover
constant-time violations between different execution times.
Dudect continuously executes the target program with ran-
domized inputs, until it statistically detects a timing violation
between two different executions. We kept the Dudect tool
running on the CTD for 24 hours with random 1-byte, 2-
byte, and 3-byte opcodes as inputs. Dudect failed to find any
violations after executing the CTD over 3.7 million times.
Decoding Correctness. To ensure the correctness of our
decoding result, we developed a differential test framework to
compare our constant time decoder and Intel Xed v2022.10.11.
Because of the composition of x64 instructions, the prefix,
opcode, modrm and sib bytes will affect its memory operand
and access type, whereas other fields will only affect the exact
memory address of the operand, but won’t change the way to
calculate the memory operand. Therefore, we systematically
enumerated all the possible values for each field and feed the
generated input to both CTD and Xed.

We validate decoding correctness under different condi-
tions: (i) for illegal instruction encodings, we ignore our
decoder’s output since these instructions may cause unde-
fined behaviors and they should never occur in well-behaved
applications; (ii) for instructions that our decoder supports,
we validate the correctness of the CTD result for both access
types and memory operand calculations; (iii) for instructions
that our decoder does not support, we ensure the CTD in-
deed outputs no memory access; (iv) for the select number
of legal instruction encodings that are not supported by Intel
SGX [16], we ignore our decoder’s output as well. We refer to
Appendix B for more details about CTD instruction coverage.

We launched this extensive differential testing approach
and enumerated 161.43 million possibilities, passing all the
testing criteria listed above. Importantly, this validates that
the CTD should not report false-positive memory accesses,
which may introduce serious memory-safety misbehavior.
Instruction Coverage on Applications. Instead of evaluat-
ing instruction coverage on Intel’s opcode table, we argue

1We compiled CTD with LLVM 11 under optimization levels -O1, -O2,
-O3, -Oz, and we hook the return value of the PSHUFB intrinsic as secret.

https://github.com/intelxed/xed/tree/v2022.10.11


Table 2: CTD instruction coverage on popular SGX runtimes.
Intel SGX
Runtime

Number of
Binaries

Total Instructions
(% - Total Coverage)

Covered Instructions
w/o CTD(%) w/ CTD(%)

SGX SDK 18 1.37M (98.6%) 0.84M (61.2%) 0.51M (37.4%)
Gramine 53 2.03M (97.5%) 1.44M (71.1%) 0.54M (26.5%)
Occlum 35 1.35M (98.1%) 0.85M (63.0%) 0.47M (35.1%)
Total 106 4.75M (98.0%) 3.13M (65.9%) 1.52M (32.0%)

that the importance of each instruction is uneven in real-world
applications. Some instructions like MOV are commonly used
across all the programs and some SIMD or cryptographic
instructions are rarely used only in certain libraries. There-
fore, we collect representative real-world binaries from the
Intel SGX SDK v2.18.1, and the Gramine v1.3.1 and Occlum
0.29.4 library OSs and statically decompile them to check if
instructions are covered by our mitigation. The results are
shown in Table 2, where we distinguish coverage without
the CTD (i.e., instructions without data memory operands or
that only access the stack) versus instructions with explicit
data operands that cannot be prefetched in the mitigation
without the information from the CTD. Summarized, our
mitigation has 98.0 % instruction coverage, of which 32.0 %
are protected by the CTD, on the 106 tested binaries.

8.4 Performance Overhead
We first measure instruction decoding time when running the
CTD once (i.e., cold cache), then we run it for 1 million times
and calculate the average time for each run (i.e., hot cache).
We repeat each experiment six times and report the geometric
mean. On the Intel Ice Lake processor, our decoder uses
729.15 cycles to finish one round with a cold cache, whereas
for a hot cache, the time cost drops to 369.00 cycles.2

Overall performance overhead of the entire defense ulti-
mately depends on the number of interrupts, which is already
a particularly expensive operation in Intel SGX: we measured
that our mitigation slows enclave resumption from 6,500 to
10,300 cycles (i.e., 58 %). Importantly, there is no further
performance penalty after resumption. Hence, if a benign OS
scheduler interrupts an enclave thread every 1 million cycles,
overall performance overhead is below 0.4 %. Note that ac-
tual interrupt rates would highly depend on the deployment
environment and the overall load of the system.

9 Mitigating Other Attacks

The AEX-Notify ISA extension we propose in this work, pro-
vides interrupt-awareness to Intel SGX enclaves, which can
be an essential building block for implementing mitigations
for a variety of side-channel attacks. Beyond the Intel SGX
architecture, we envision that our design for interrupt-aware

2For reference, general-purpose disassemblers like Capstone or Intel Xed
require around 1 million cycles to disassemble one instruction.

enclaves may also be useful for other TEEs that have been
subject to similar attacks [8, 37, 42, 53, 70]. Interrupt aware-
ness has been assumed [47, 59] or emulated [5, 9, 38, 55] in
software in the majority of existing proposals for mitigating
interrupt-driven attacks. Thus, we anticipate that AEX-Notify
may be leveraged to enable a range of side-channel defenses.

Controlled Channels. The Heisenberg defense [59] pro-
poses to prefetch enclave’s pages when an enclave is resumed
by forcing it to execute trusted code that does this prefetching
right before resuming the enclave’s execution. This code ef-
fectively populates the TLB, obfuscating the accesses to the
respective pages by the enclave logic. AEX-Notify makes it
easy to realize this defense in its handler. Compared to our de-
fense, however, such an AEX-Notify extension would require
developer or compiler assistance to identify the enclave’s
secret-dependent working set that needs to be prefetched.

Autarky [47] suggests to invoke a trusted page-fault handler
in the enclave, which checks whether the faulting page was
actually authorized to be evicted. AEX-Notify can be used to
implement this mechanism in the handler. It may differentiate
between the AEX due to page faults and the AEX due to
other interrupts by inspecting the base address of the faulting
page in the SSA structure [16]. It is worth noting that this
implementation may work in bare-metal execution, but not
in a virtual machine as the address of the faulting page is
hidden in the latter case. Furthermore, as page tables still
reside in untrusted memory, this defense would not protect
against stealthy attacks that do not rely on page faults [65].

T-SGX [55] strives to prohibit enclave page faults by ex-
ecuting enclave code in TSX transactions. This approach
is highly prone to false positives. Instead, AEX-Notify can
reliably identify the page fault by its base address in SSA.

L1/L2 Cache Side Channels Varys [46] defends against
cache-timing (L1/L2) and side-channel attacks. It detects
AEXs by watching for changes in the SSA structure, and then
flushes the caches. However, this method of detecting AEX
is costly due to polling, and it might miss the interrupt event.
Our AEX-Notify handler could be adopted to implement this
mitigation, or replace it with populating the cache with the
sensitive working set similarly to the mitigation for single-
stepping attacks discussed in this paper.

10 Conclusion

The continued success of confidential computing will benefit
from solutions to problems that are unique to TEEs. The
work presented in this paper is a novel mitigation for one such
problem: fine-grained execution control by a malicious OS or
VMM. We designed the mitigation to be practical enough to
be enabled by default with negligible performance overhead.
Finally, we hope that our analysis of SGX-Step will help to
influence the design and implementation of new TEEs.

https://github.com/intel/linux-sgx/tree/sgx_2.18.1
https://hub.docker.com/layers/gramineproject/gramine/v1.3.1/images/sha256-a85f7b12a6927468b87262243a29dd050a09212c15e89d6c41dec83ffc066a9f
https://hub.docker.com/layers/occlum/occlum/0.29.4-ubuntu20.04/images/sha256-4928778f44598e798b3dd22c4af56dae337649461b1977d700a374bf20b1170f
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A APIC Precision Microbenchmarks

The local APIC [16] timer can be configured in one-shot or
periodic mode to send an interrupt when an MMIO counter
register reaches zero, or in TSC-deadline mode when the
processor’s timestamp counter exceeds a value specified in the
dedicated IA32_TSC_DEADLINE_MSR model-specific register.
Depending on the processor model, the APIC timer operates
at the frequency of either the processor’s bus clock or its
core crystal clock. Neither time source is synchronized with
the core clock, which typically operates at a much higher
frequency (e.g., more than 100× higher).

All experiments below were performed on an Intel Ice
Lake processor-based server platform, with a base frequency
of 2.4 GHz and an APIC core crystal clock resolution of 1
tick per 320 core clock cycles (as reported by CPUID).
One-Shot Mode. SGX-Step by default operates the APIC
timer in one-shot mode with division 2 [63]. SGX-Step
requires its user to manually determine the timer duration



10700 10800 10900 11000 11100
Latency (cycles)

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

oneshot (μ=10956, σ=72)
TSC syscall (μ=10858, σ=438)
TSC IRQ gate (μ=10918, σ=37)

Figure 7: Interrupt arrival timing distributions in elapsed CPU
cycles for 100,000 iterations when configuring the APIC timer
in MMIO one-shot mode (green, right), TSC-deadline mode
via the Linux msr driver (orange, left), and TSC-deadline
mode via a custom interrupt gate (blue, middle).

(which will vary by platform) for a one-shot interrupt to reli-
ably land on the first enclave instruction, i.e., the first instruc-
tion that executes after entering the enclave via ERESUME.

In our first microbenchmark experiment, we programmed
the APIC timer in one-shot mode to fire an interrupt in 30
ticks (9,600 cycles) – roughly the latency of the ERESUME
instruction. The benchmark program executes a lengthy in-
struction slide of register ADD instructions immediately fol-
lowing the instruction that arms the APIC timer. We used
SGX-Step’s page-table manipulation functionality to map
the APIC’s MMIO interface into user space, so as to avoid
any overheads from kernel context switches. We, further-
more, read the counter register in the interrupt handler to
derive the number of ADD instructions executed before inter-
rupt arrival. Our experiment reads the processor’s time-stamp
counter using RDTSC before arming the APIC and again at
the start of a custom handler registered in the processor’s
interrupt-descriptor table. Sampled over 100,000 repetitions,
Figure 7 shows that the measured one-shot interrupt intervals
were normally distributed with µ = 10,957;σ = 73 cycles (or
µ = 9,684;σ = 49 ADD instructions).
TSC-Deadline Mode. Anticipating more advanced, adaptive
adversaries, we hypothesized that operating the APIC timer
in TSC-deadline mode may yield more accurate results, as
IA32_TSC_DEADLINE_MSR can be programmed at the much
finer-grained granularity of CPU core clock cycles. In this
respect, the SGX-Step authors [63] explicitly mention that
they trade timer interval predictability for a lower frequency
by operating the APIC timer in one-shot mode via direct,
user-space MMIO. That is, the possibly more precise TSC-
deadline mode requires privileged WRMSR instructions that
necessitate user-kernel context switches within the timer in-
terval. Earlier, coarser-grained and more noisy Intel SGX
interruption attacks [27, 41, 44] indeed configured the APIC
timer in TSC-deadline mode from within the OS kernel, be-
fore making an expensive context switch back to user space

and resuming the victim enclave.
We first designed an experiment to quantify the accuracy

of such a naive approach by measuring the elapsed cycles
between the start of our custom interrupt handler and an
RDTSC snapshot before making a system call to the Linux
msr driver to program IA32_TSC_DEADLINE_MSR with an off-
set of 9,600 cycles. Over 100,000 repetitions, Figure 7 shows
that the measured TSC-deadline interrupts arrived following
a remarkably wider distribution with µ = 10,859;σ = 438
cycles (or µ = 3,070;σ = 568 ADD instructions).

Finally, as a contribution of independent interest, we de-
vised an improved setup to considerably reduce the noise
from additional kernel context switches. For this, we reg-
istered a custom ring-0 interrupt gate in the processor’s
interrupt-descriptor table. This allows to essentially by-
pass the OS kernel altogether by directly invoking a min-
imal assembly handler that programs a specified value in
IA32_TSC_DEADLINE_MSR using the privileged WRMSR in-
struction via a software interrupt (i.e., by including the INT
x86 instruction before ERESUME). Using this innovative tech-
nique, we measured an improved, narrower TSC-deadline
interrupt arrival distribution of µ = 10,918;σ = 38 cycles (or
µ = 8,734;σ = 67 ADD instructions).

We conclude that our novel interrupt-gate TSC-deadline
timer configuration technique yields a considerable improve-
ment in terms of standard deviation of elapsed cycles for both
the existing one-shot technique that SGX-Step currently uses,
as well as naive kernel-level configuration approaches (cf.
as is also visually evident from Figure 7). However, these
results also clearly indicate that, even in TSC-deadline mode,
privileged adversaries remain limited by the APIC internal
clock, which is significantly lower than the core frequency
and thus induces inevitable jitter on timer interrupt arrivals.
Inter-Processor Interrupts. In a final set of experiments,
we wanted to assess the accuracy of inter-processor inter-
rupts (IPIs), which are similarly sent and received via the
local APIC bus and can be triggered by merely writing to
memory-mapped APIC registers [16]. Specifically, prior
work [65] has demonstrated a reliable technique to reliably
interrupt a victim enclave at a near-perfect, instruction-level
granularity by issuing IPIs from a kernel-level spy thread that
concurrently monitors a victim enclave’s page-table accesses
using a combination of A/D PTE bits and a high-resolution
Flush+Flush [25] side channel.

To assess this advanced type of cross-core adversaries,
we extended SGX-Step with support for user-space IPIs via
memory-mapped APIC registers. We, furthermore, designed
an experiment to measure the elapsed cycles between trig-
gering an IPI from a spy CPU and execution of our custom
interrupt handler on the victim CPU. In our setup, we first
synchronize spy and victim threads, before triggering the
IPI in the spy thread and executing a lengthy NOP instruc-
tion slide in the victim thread. Over 100,000 samples, we
found IPI latency to be distributed with µ = 935;σ = 27 cy-



cles (or µ = 523;σ = 120 NOP instructions) when the spy and
victim threads reside on different physical cores. Alterna-
tively, when the spy and victim reside on the same physical
CPU with SMT technology, we measured an increased IPI
latency of µ = 1,772;σ = 174 cycles (or µ = 778;σ = 506
NOP instructions).

In summary, these results show that cross-core privileged
adversaries who may attempt to interrupt victim enclaves
through IPIs remain similarly limited by jitter and delays
from the limited APIC clock frequency.

B Coverage of the Constant-Time Decoder

Table 3 details the instruction coverage of our CTD prototype.
We divide the table by the number of bytes for an instruction’s
opcode, which is at most 3 bytes for state-of-art x64 instruc-
tions. Besides the table, the CTD currently does not support
rip relative addressing. Note that for instructions not clearly
stated as supported, CTD does not support them.

Table 3: Our CTD is designed to support a subset of com-
monly used instructions for x64.
Opcode Type Supported Instructions Unsupported Instructions

1 byte Normal All except right
x87 instructions
VEX/EVEX instructions

Extension All None

2 byte Normal All None

Extension All except right
PREFETCHIT/XSAVE/XRSTOR
XSAVEOPT/XRSTORS/XSAVEC
XSAVES/PTWRITE/CLRSSBSY

3 byte N/A None All (94 instructions in total)

C AEX Notification Handler Assembly Stub

1 # \arg %rsi code_tickle_address
2 # L-> bit 0: whether to write to data address
3 # L-> bit 4: whether to add cycle delay
4 # \arg %rdx data_tickle_address
5 # \arg %rbp stack1_tickle_address
6 # \arg %rbx stack2_tickle_address
7 # \arg %rdi cr3_code_byte_address
8 .ct_enable_aexnotify:
9 mov RSVD_AEXNOTIFY_OFFSET(%rsp), %rax

10 movb $1, (%rax) # Enable AEX-Notify
11 __ct_mitigation_begin:
12 lfence # Ensure earlier faults taken
13 .ct_check_write:
14 movl $63, %ecx
15 shlx %rcx, %rsi, %rcx
16 jrcxz .ct_clear_low_bits_of_rdx
17 lea -1(%rsi), %rsi # Clear bit 0
18 movb (%rdx), %al
19 movb %al, (%rdx)
20 .ct_clear_low_bits_of_rdx:
21 movl $12, %ecx
22 shrx %rcx, %rdx, %rdx
23 shlx %rcx, %rdx, %rdx
24 mov $0x1000 , %ecx
25 .ct_warm_caches_and_tlbs: # loops 64 times
26 lea -0x40(%ecx), %ecx
27 call *%rdi
28 mov (%rsi, %rcx), %eax
29 mov (%rbp, %rcx), %eax
30 mov (%rbx, %rcx), %eax
31 mov (%rdx, %rcx), %eax
32 jrcxz .ct_restore_state
33 jmp .ct_warm_caches_and_tlbs
34 .ct_restore_state:
35 movzx %sil, %ecx
36 mov RSVD_REDZONE_WORD_OFFSET(%rsp), %rdi
37 mov %rdi, -SE_WORDSIZE(%rsp)
38 mov RSVD_RDI_OFFSET(%rsp), %rdi
39 mov RSVD_RSI_OFFSET(%rsp), %rsi
40 mov RSVD_RBP_OFFSET(%rsp), %rbp
41 mov RSVD_RBX_OFFSET(%rsp), %rbx
42 mov RSVD_RDX_OFFSET(%rsp), %rdx
43 mov RSVD_RAX_OFFSET(%rsp), %rax
44 jrcxz .ct_restore_rcx
45 .rept 20
46 lea (%rsp), %rsp
47 .endr
48 .ct_restore_rcx:
49 mov RSVD_RCX_OFFSET(%rsp), %rcx
50 jmp *RSVD_RIP_OFFSET(%rsp)
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